
Data Pictorial: Deconstructing Raster Images
for Data-Aware Animated Vector Posters

Tongyu Zhou
Brown University
Providence, RI, USA

Gromit Yeuk-Yin Chan
Adobe Research
San Jose, CA, USA

Shunan Guo
Adobe Research
San Jose, CA, USA

Jane Hoffswell
Adobe Research
San Jose, CA, USA

Chang Xiao
Adobe Research
San Jose, CA, USA

Victor Soares Bursztyn
Adobe Research
San Jose, CA, USA

Eunyee Koh
Adobe Research
San Jose, CA, USA

Raster Poster

Label Components

{'Sun': {'description': 'A
large, yellow-orange sphere
with a mottled surface sug-
gesting solar flares or tur-
bulence.'}, 'Mercury': {'de-
scription': 'A small, brown-
ish sphere lower left to the
Sun.'}, 'Venus': {'descrip-
tion': 'A medium-sized, pale

Object Detection + Crop to SVG Data-Aware Animated Vector Poster

SVG Properties

Row Names, Column Names, Metadata

Im
ag

e
La

be
ls

Create SVG Data Bindings

opacity density
transform-scale diameter

animateTransform-rotation-dur length of day

animateMotion-dur orbital period

Mercury MERCURY
Venus VENUS

.

.

.

Neptune NEPTUNE
transform-translate distance from the sun

Figure 1: Our pipeline for Data Pictorial: a static raster poster is decomposed into cropped, labeled components that are

converted to SVG elements. Bindings are then established between the metadata of an input data table, the image labels, and

SVG properties to construct a data-aware vectorized poster that dynamically cycles through data values via SMIL animation.

ABSTRACT

To support data integration into pictorials, we propose Data Picto-
rial, a pipeline that deconstructs a raster image into SVG objects
whose attributes are contextualized in data. This process is achieved
by cropping objects of interest using zero-shot detection, convert-
ing them into quantized bitmaps, and tracing the results as SVG
paths. The technique then provides suggestions for binding the
SVG objects and properties with data fields, affording the flexibility
to automatically modify and animate the SVG based on the map-
ping. The resultant data-aware vector hypermedia can be potential
candidates for real-time data inspection and personalization, all
while maintaining the aesthetic of the original pictorial.

CCS CONCEPTS

• Human-centered computing→ Visualization toolkits.

KEYWORDS

lazy data binding, infographics, animated vector graphics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0718-6/24/10
https://doi.org/10.1145/3672539.3686353

ACM Reference Format:

Tongyu Zhou, Gromit Yeuk-Yin Chan, Shunan Guo, Jane Hoffswell, Chang
Xiao, Victor Soares Bursztyn, and Eunyee Koh. 2024. Data Pictorial: Decon-
structing Raster Images for Data-Aware Animated Vector Posters. In The
37th Annual ACM Symposium on User Interface Software and Technology
(UIST Adjunct ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3672539.3686353

1 INTRODUCTION

Pictorial posters, as a subcategory of infographics, convey key in-
sights to a viewer through visual illustrations. However, they often
do not depict the actual data backing their messages, and can be
tedious to modify if the user wishes to inject this data while main-
taining the style of the pictorial. Recent approaches in generating
pictorial visualizations such as DataQuilt [16], MetaGlyph [15],
ChartSpark [14], and Infomages [2] have thus proposed pipelines
where images are processed as backgrounds, glyphs, or stylistic
guides for different types of visualizations. However, these work-
flows assume a template visualization such as a bar graph, line chart,
or scatterplot as the primary subject to guide the layout of the visual
elements. The pictorial illustrations either lose their original lay-
outs in favor of the new layout [16], or must have an original layout
that resembles the desired visualization layout [2]. Other similar
work in lazy data-binding with expressive graphics [4, 6, 13] are
not restrictive to visualization layouts, but either require the user
to author vector graphics within the system or import a suitable
one that contains elements that can be bound to data.

https://doi.org/10.1145/3672539.3686353
https://doi.org/10.1145/3672539.3686353

UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhou et al.

Original Image GPT-4V (generated) InkscapeOurs Adobe Express

Figure 2: Comparison of our raster to SVG approach, Data

Pictorial, to existing conversion methods [1, 3, 9].

In contrast, our proposed approach allows the user to bind data
to any raster image by deconstructing it into vectorized SVG com-
ponents. We compare our conversion strategy against existing com-
mercial methods [1, 3, 9], noting that more complex models such as
DiffVG [5], LIVE [7], or Neural Painting [17] may provide greater
fine-tuning at the expense of simplicity. Our pipeline, Data Picto-
rial, then recommends bindings between properties of the vector
objects and the input data fields. While prior work has focused only
on static data bindings, Data Pictorial allows data fields to be
directly bound to animated parameters in addition to static ones.

2 DATA PICTORIAL

2.1 Deconstructing Raster Posters

We segment the raster-based image using zero-shot object detec-
tion with the pretrained OWL-ViT model [8] to identify objects to
convert into SVG elements. The background of the cropped image
is removed using rembg, a port of U2-Net [10]. Color quantization is
then performed on the image to split it into 𝑛 colors as specified by
the user (with a default value of 𝑛 = 10). A binary mask is created
for each color; we then apply a Gaussian blur, with user-adjustable
standard deviation, to the mask for antialiasing. The blurred mask is
used to extract bitmaps for each color from the original image. Each
bitmap is passed to potrace [11], a polygon-based tracing algo-
rithm, to extract Bézier curves to convert into SVG path commands.
All SVGs paths are then combined to create the SVG object. Figure 2
shows an example output of this conversion process compared to
existing raster-to-SVG pipelines. We note that generative vision
models like GPT4 (2024-02-15-preview) are not yet able to handle
complex SVGs, and other approaches may result in artifacts.

2.2 Mapping SVG Properties to Data

To associate mappings between data and the now converted SVG
properties, we assume we have a CSV as our input dataset. We then
prompt GPT4V to label all the objects in the original image with
a one-sentence description of each object’s visual appearance. We
also gather a list of SVG properties such as 𝑥 position, 𝑦 position,
rotation, scale, opacity, etc. With this information, we create embed-
dings for the row and column names of the dataset, the label and
descriptions, and SVG property names using the sentence trans-
formers model MiniLM [12]. We obtain the most similar pairs of
embeddings by computing pairwise cosine similarities. The user can
use these recommendations, or directly assign the desired mapping.

2.2.1 Static Attributes. We create mappings between data fields
and the static attributes of SVG elements by scaling the relevant
data fields to the appropriate ranges supported by the SVG attribute.

density=5514 kg/m3

diameter=12756 km

length of day=24 hr

orbital period=365.2 d

<svg id="earth">...</svg>

Bound Data

distance from
the sun=149.6 mil km

SVG Property

opacity="1.0"

transform="scale(0.12756)"

<animateTransform
attributeName="transform"
type="rotate" dur="4.8s"
repeatCount="indefinite"
from="0 75.0 69.0"
to="360 75.0 69.0"/>

transform="scale(2.137)"

<animateMotion dur="3.652s"
repeatCount="indefinite">
<mpath xlink:href="#earth_mpath"/>
</animateMotion>

<path id="earth_mpath"
d="M10,0 A10,10 0 1,1
10,20 A10,10 0 1,1 10,0"/>

<path id="earth_mpath"
d="M21.37,0.0 A21.37,21.37 0 1,1
21.37,42.74 A21.37,21.37 0 1,1
21.37,0.0"/>

Bake Transformations

Figure 3: Data fields and SVG properties are bound by gener-

ating attribute strings with the scaled data for each SVG.

For example, to map density (𝑑 ∈ [687, 5514] based on densities of
all the planets) to opacity (𝑜 ∈ [0, 1]), the density must be re-scaled
to that range, 𝑜 = (𝑑 −𝑑𝑚𝑖𝑛) ∗ (𝑜𝑚𝑎𝑥 −𝑜𝑚𝑖𝑛)/(𝑑𝑚𝑎𝑥 −𝑑𝑚𝑖𝑛). Users
can additionally enter custom minimum 𝑜𝑚𝑖𝑛 and maximum 𝑜𝑚𝑎𝑥

ranges for each SVG attribute to create particular visual effects or if
the attribute does not have set ranges (i.e., duration). Then, for each
SVG object, we generate an attribute string corresponding to each
data field (Figure 3) and merge the strings accounting for overlaps
in attributes, resulting in a final attribute string that can be parsed
by any modern web browser. Each SVG object is converted to a
<group> element and appended to a larger SVG wrapper.

2.2.2 Animations. We support two types of data-aware anima-
tions, 1) in-situ and 2) motion-path. In-situ animations transform
the SVG object in place, and are constructed similarly to the static
attributes. The only difference is that instead of modifying the
attributes, we add <animate> and <animateTransform> child el-
ements to the SVG element and map data properties to these ani-
mated attributes. Conversely, motion-path animations move SVG
objects over a given trajectory, which can be extracted from any
closed path (curve or line) from the original static raster image or
additionally drawn by the user. SVG objects are then instructed
to follow these paths by referencing them with <animateMotion>
and <mpath> tags. Per the SVG specification, path following only
works for the absolute coordinates of the path, specified by the d
attribute, so we automatically bake transformation matrices into
the path when it is moved, scaled, or rotated.

3 APPLICATIONS & FUTUREWORK

Future work will focus on an accompanying direct manipulation
interface for users, as well as a study to evaluate the possible in-
teractions and usability of the technique. Additionally, data in the
resultant SVGs can be updated in real time by embedding JavaScript
to pull from data APIs or system time when loaded. However, we
note that further work is needed to handle instances where the
structure of the dataset changes. While Data Pictorial focuses on
binding pictorials to standard datasets, other potential use cases in-
clude extending this technique to other types of visualizations and
personalization–empowering the user to attribute SVG properties
to individual traits when sharing vector posters with others.

UIST Adjunct ’24, October 13–16, 2024, Pittsburgh, PA, USA

REFERENCES

[1] Adobe Inc. 2015. Adobe Express. https://www.adobe.com/express/feature/
image/convert/png-to-svg

[2] D. Coelho and K. Mueller. 2020. Infomages: Embedding Data into Thematic
Images. Computer Graphics Forum 39, 3 (2020), 593–606. https://doi.org/10.1111/
cgf.14004 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14004

[3] Inkscape Project. 2003. Inkscape. https://inkscape.org/
[4] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li,

Jovan Popovic, and Hanspeter Pfister. 2017. Data-Driven Guides: Supporting
Expressive Design for Information Graphics. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (2017), 491–500. https://doi.org/10.1109/TVCG.2016.
2598620

[5] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. 2020.
Differentiable vector graphics rasterization for editing and learning. ACM Trans-
actions on Graphics (TOG) 39, 6 (2020), 1–15.

[6] Zhicheng Liu, John Thompson, AlanWilson,Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (,
Montreal QC, Canada,) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173697

[7] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun
Fu, and Humphrey Shi. 2022. Towards Layer-wise Image Vectorization.
arXiv:2206.04655 [cs.CV]

[8] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weis-
senborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa
Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil
Houlsby. 2022. Simple Open-Vocabulary Object Detection with Vision Trans-
formers. arXiv:2205.06230 [cs.CV]

[9] OpenAI. 2023. GPT4V. https://openai.com/index/gpt-4v-system-card/
[10] Xuebin Qin, Zichen Zhang, ChenyangHuang, Masood Dehghan, Osmar R. Zaiane,

and Martin Jagersand. 2020. U2-Net: Going deeper with nested U-structure for
salient object detection. Pattern Recognition 106 (Oct. 2020), 107404. https:
//doi.org/10.1016/j.patcog.2020.107404

[11] Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm.
[12] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.

2020. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers. arXiv:2002.10957 [cs.CL]

[13] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and Daniel
Wigdor. 2018. DataInk: Direct and Creative Data-Oriented Drawing. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems (,
Montreal QC, Canada,) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173797

[14] Shishi Xiao, Suizi Huang, Yue Lin, Yilin Ye, and Wei Zeng. 2024. Let the Chart
Spark: Embedding Semantic Context into Chart with Text-to-Image Generative
Model. IEEE Transactions on Visualization and Computer Graphics 30, 1 (2024),
284–294. https://doi.org/10.1109/TVCG.2023.3326913

[15] Lu Ying, Xinhuan Shu, Dazhen Deng, Yuchen Yang, Tan Tang, Lingyun Yu, and
Yingcai Wu. 2023. MetaGlyph: Automatic Generation of Metaphoric Glyph-based
Visualization. IEEE Transactions on Visualization and Computer Graphics 29, 1
(2023), 331–341. https://doi.org/10.1109/TVCG.2022.3209447

[16] Jiayi Eris Zhang, Nicole Sultanum, Anastasia Bezerianos, and Fanny Chevalier.
2020. DataQuilt: Extracting Visual Elements from Images to Craft Pictorial
Visualizations. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (, Honolulu, HI, USA,) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376172

[17] Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. 2020.
Stylized Neural Painting. arXiv:2011.08114 https://arxiv.org/abs/2011.08114

https://www.adobe.com/express/feature/image/convert/png-to-svg
https://www.adobe.com/express/feature/image/convert/png-to-svg
https://doi.org/10.1111/cgf.14004
https://doi.org/10.1111/cgf.14004
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14004
https://inkscape.org/
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1145/3173574.3173697
https://arxiv.org/abs/2206.04655
https://arxiv.org/abs/2205.06230
https://openai.com/index/gpt-4v-system-card/
https://doi.org/10.1016/j.patcog.2020.107404
https://doi.org/10.1016/j.patcog.2020.107404
https://arxiv.org/abs/2002.10957
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1109/TVCG.2023.3326913
https://doi.org/10.1109/TVCG.2022.3209447
https://doi.org/10.1145/3313831.3376172
https://arxiv.org/abs/2011.08114
https://arxiv.org/abs/2011.08114

	Abstract
	1 Introduction
	2 Data Pictorial
	2.1 Deconstructing Raster Posters
	2.2 Mapping SVG Properties to Data

	3 Applications & Future Work
	References

