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ABSTRACT
Fact-checking data claims requires data evidence retrieval and anal-
ysis, which can become tedious and intractablewhen donemanually.
This work presents Aletheia, an automated fact-checking prototype
designed to facilitate data claims verification and enhance data evi-
dence communication. For verification, we utilize a pre-trained LLM
to parse the semantics for evidence retrieval. To effectively commu-
nicate the data evidence, we design representations in two forms:
data tables and visualizations, tailored to various data fact types.
Additionally, we design interactions that showcase a real-world ap-
plication of these techniques. We evaluate the performance of two
core NLP tasks with a curated dataset comprising 400 data claims
and compare the two representation forms regarding viewers’ as-
sessment time, confidence, and preference via a user study with 20
participants. The evaluation offers insights into the feasibility and
bottlenecks of using LLMs for data fact-checking tasks, potential
advantages and disadvantages of using visualizations over data
tables, and design recommendations for presenting data evidence.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Empirical studies in visualization; • Information
systems → Information retrieval query processing.
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automated fact-checking, information visualization, data-driven
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1 INTRODUCTION
Imagine skimming through an ESPN analysis comparing two ath-
letes’ performances, reading a New York Times article about COVID
trends, or browsing Fox News coverage on the upcoming U.S. elec-
tion. These articles likely contain many data claims. However, data
claims can contain inaccuracies from various sources. Errors and
omissions might arise from oversights during the composition
phase, where analysts engage in data analysis and manually tran-
scribe insights into textual form [21]. Additionally, the frequent
updates in data can exacerbate discrepancies between the data and
the claims made. More alarmingly, bad actors may deliberately ma-
nipulate or fabricate data facts to advance specific agendas or pro-
paganda. Regardless of intent, such flawed data claims contribute
to a flood of misinformation that inundates and contaminates our
information ecosystem, potentially misleading the public.

A standard practice to mitigate misinformation is through fact-
checking, a process of assessing the veracity of textual claims based
on authoritative or trusted evidence. Typically undertaken by pro-
fessional fact-checkers within news organizations, fact-checking
has long held a vital role in upholding the accuracy and integrity of
information [30]. However, with manual fact-checking challenged
by the increasing column of information production and dissemi-
nation, both practitioners and researchers are turning to advanced
technology, notably automated fact-checking (AFC) [1, 31].

Automated fact-checking applies to many scenarios, especially
in news platforms and social media. Researchers in computational
journalism [22, 27] have advocated for sophisticated technologies
to enhance and facilitate fact-checking tasks. Such tools can serve
multiple roles for fact-checkers and journalists alike, and empower
news readers to critically audit the content they consume [28].
Recently, the data mining and natural language processing (NLP)
communities have contributed to a growing body of research to
address this demand [101, 102], with a particular emphasis on down-
stream tasks [53, 55, 108], domain-specific requirements [54, 92],
and the provision of annotated claim-evidence datasets [32, 89]
for model training. The majority of prior work has mainly con-
centrated on text-based evidence, wherein claims are verified by
cross-referencing themwith a textual corpus of established facts, in-
cluding sources likeWikipedia pages [78] and scientific articles [93].

Data claims, also known as numeric or statistical claims [17], use
natural language to describe facts/insights derived from structured
data and/or statistics. We posit that the veracity of data claims
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is intrinsically tied to specific quantitative datasets, leading to a
divergence in tasks from the conventional text-based fact-checking
pipeline. This divergence can manifest at various stages, primarily
evidence retrieval and presentation. While some existing solutions
for automated fact-checking translate natural language into SQL
queries [43, 47], these methods often struggle to address more
complex insights (e.g., anomalies, trends, associations, etc.). These
methods also require a pre-established knowledge base or set of SQL
query candidates tailored to the dataset, limiting their applicability
to new datasets. Furthermore, despite recognizing the importance
of providing corroborating justification [31, 90], research on data
evidence presentation and optimal representation forms for diverse
data claims is scarce. Effective presentation of data evidence can not
only bolster persuasiveness but also empower viewers to pinpoint
inconsistencies between evidence and outcomes.

Thus, this work tackles two primary research questions:Q1. “how
do we enable out-of-the-box automated fact-checking for data claims?”
and Q2. “how do we effectively represent and communicate data evi-
dence?” Building upon an established fact-checking framework [31],
we first propose a modified automated data fact-checking frame-
work (Figure 1) comprising six components: data claim detection (C1),
text-to-data mapping (C2), data evidence retrieval (C3), verdict deter-
mination & presentation (C4), data evidence presentation (C5), and
end user interaction (C6). We design and develop a prototype fact-
checking system, Aletheia, to integrate these components, serving
as both a proof-of-concept for our proposed framework and a design
prototype that showcases its feasibility for practical applications.

This pipeline uses GPT models for downstream NLP tasks, lever-
aging its innate semantic parsing abilities [77, 107]. Informed by a
content analysis of data claims in sixteen real-world articles, our
prompting pipeline uses seven steps (Figure 2) to transform claims
into data fact specifications [25, 80, 97]. This transformation en-
hances the transparency and interpretability of the connections
between claims, the pertinent data subsets, and the derived insights.

For more effective data evidence communication, we introduce
twenty-six data evidence representations across both data tables
and visualizations for thirteen data fact types. To improveAletheia’s
practical utility, we incorporate interactions to facilitate stakehold-
ers’ fact-checking needs, such as overriding AI-induced mistakes.

We evaluate Aletheia’s two key components: the performance
of the core steps in our claim-to-data transformation pipeline (Q1),
and the effectiveness of the data evidence presentation when com-
paring the data table and visualization (Q2). In particular, we assess
the backend pipeline on a manually curated dataset of 400 claims
across various types (Section 5), demonstrating the LLM’s promis-
ing capabilities in classifying data facts and converting natural
language data claims to data fact specifications. Regarding Q2, we
conducted a mixed-method user study with 20 participants tasked
with reviewing data claims (Section 6). Our findings indicate that vi-
sualization charts outperform data tables in terms of the reviewing
time for most data fact types (7 out of 13), enhance participant con-
fidence across all data fact types, and are preferred in the majority.
Drawing from our findings, we ultimately put forth four general
design recommendations for effectively presenting data evidence.

2 RELATEDWORK
This work is driven by prior research in automated fact-checking,
existing strategies on justification presentation, and techniques for
visually linking between text, tables, visualizations, and data.

2.1 Automated Fact-checking
Automated fact-checking has garnered significant attention in the
NLP community to help countermisinformation and disinformation.
Extensive research effort has been dedicated towards downstream
tasks, including claim detection [34, 35], evidence retrieval [33,
55], verdict prediction [72, 86], justification production [41, 68],
and more. Guo et al. [31] consolidate these tasks into a cohesive
framework outlining the essential components for automated fact-
checking systems. We refined this framework specifically for data
claims, leading to the creation of Aletheia.

Traditionally, automated fact-checking systems was grounded
on knowledge bases, verifying claims against a textual corpus of
accumulated facts (e.g., Wikipedia pages [78], scientific articles [93],
or knowledge graphs [87]). These systems rely on pre-established,
reliable information sources to identify related supporting claims
as evidence and determine the veracity based on the coherence
with the evidence. In contrast, our work focuses on data claims that
are not explicitly in the knowledge base but can be inferred from
structured data tables. Data tables are a ubiquitous medium for stor-
ing information across various applications, and practitioners(e.g.,
data analysts, business analysts, etc.) often create text reports to
summarize insightful statistics.

Previous research in text-to-data matching has tackled simi-
lar challenges, linking entities in text paragraphs to data tables
through semantic parsing [36, 60, 65, 88, 105]. Additionally, chart
reasoning techniques have been applied to fact-checking applica-
tions, focusing on verifying the correctness of data statements with
a given chart image. For instance, Akhtar et al. introduced two
baseline datasets [3, 4] for generating explainable fact-checking
results over chart images. Most of these methods operate within
supervised settings, which require expensive training on extensive
documents, data tables, and chart images. Alternatively, unsuper-
vised solutions [2] often suffer from limited scalability and unstable
performance [95]. Another line of research addresses this problem
by translating natural language claims into SQL queries and vali-
dating the claimed values against the queried results. For example,
AggChecker [43] maps data claims to a probability distribution
over a set of candidate SQL queries. While this method operates
in an unsupervised manner, expanding the system to accommo-
date new datasets requires updates to the query candidates and
probabilistic models to account for new table schemas. Similarly,
Scrutinizer [47] employs an NL-to-SQL translation strategy but
integrates an additional mixed-initiative pipeline that permits in-
put from human experts to guide the translation process. However,
the initial translation model relies on machine learning classifiers
trained exclusively on the schema of the input data table, thereby
constraining its adaptability to new datasets.

Considering the broad accessibility of pretrained LLMs (e.g.,
GPTs) and the proven ability in initial fact-checking trials [16, 38,
84], this study delves into a fact-checking solution harnessing the
integrated capability of pretrained LLM. Our primary goal is to
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explore an “out-of-the-box” fact-checking solution designed for
non-expert practitioners, such as journalists and business analysts,
who often lack the resources for model training andmay not possess
an in-depth understanding of complex fact-checking models.

2.2 Verdict and Justification Presentation
When assessing verdicts through automated approaches, it is cru-
cial to communicate its fact-checking decisions to the fact reviewers
with comprehensible justifications [24, 29, 31, 53, 90]. Consequently,
effectively presenting fact-checking results emerges as a vital re-
search aspect that culminates at the end of the fact-checking pro-
cess [82]. The primary method of conveying verdicts involves the
use of veracity indicators [7], i.e., graphical elements succinctly en-
capsulating the veracity of claims on truth scales. For instance, color
codings are commonly applied to present fact-checking outcomes
in a variety of fact-checking research endeavors [43, 75, 89]. Public-
facing fact-checking platforms, such as PolitiFact and Snopes, often
include more comprehensive fact-check ratings that encompass not
only varying levels of claim truthfulness but also categories such
as scam, outdated, or research-in-progress to enhance credibility.
ClaimViz [76] presents a visual analytics system that supports jour-
nalists in reviewing large amounts of factual claims and identifying
check-worthy ones.In an effort to provide guidance on effective
presentation of verified information to fact-checking report read-
ers, Hettiachchi et al. [37] identified six critical design elements
in fact-checking reports and studied their impact on improving
the credibility and presentation of the reports with crowd-sourced
experiments.

In the pursuit of enhancing the explainability of automated
fact-checking systems, automated fact-checking research has em-
ployed different approaches [24, 31, 90], including summarization
(extractive and abstractive) [11, 53], logic-based [18], attention-
based [73, 81], and counterfactual [103] methods. Vallayil et al. [90]
specifically examines the application of explainable AI (XAI) to auto-
mated fact-checking, highlighting significant challenges existing in
multiple aspects, including the current lack of datasets that facilitate
the explanations production and the ambiguity surrounding dif-
ferent concepts and taxonomy (e.g., global vs. local explainability).
More recent studies (e.g.[5]) aim to provide datasets for explainable
fact-checking. However, it is worth noting existing explainable fact-
checking research also predominately resolves around claims and
evidence presented in unstructured text, whereas our work centers
on data-driven claims and evidence rooted in structured quantita-
tive information that requires distinct forms of presentation.

2.3 Linking Data to Visual Representations
When reviewing data-driven claims, identifying relevant data sources
serves as the cornerstone for assessing the veracity [46, 67]. Conse-
quently, effectively communicating the underlying data to viewers
during the process is pivotal in developing data fact-checking sys-
tems. The HCI community has made substantial contributions in
advancing the realm of efficient data communication and content
consumption within data documents using other visual representa-
tions, including data tables and visualization charts. For instance,
Kong et al. [52] developed an interactive document viewer with the
reference among text, tables, and visualization charts established by

crowdsourced workers. Kim et al. [49] automated the association
between text and table cells using NLP techniques, enabling the
interactive highlighting of relevant table cells in response to user-
selected sentences. Badam et al. [13] proposed to connect text and
tables through the generated contextual visualizations to enhance
the reading experience. Latif et al. introduced Kori [56], a mixed-
initiative interface designed to facilitate the authoring process of
interactive data documents by offering both recommendations for
linking text with charts and manual construction of references.
These techniques effectively link textual content with predefined
tables or visualizations embedded in the same document. In our
fact-checking context, we consider the entire dataset behind the
scenes, with the audience exposed solely to the textual content.

Within this context, Chen and Xia developed CrossData [21],
an authoring assistance system that retrieves backend data and
presents it in table or visualization form during the document au-
thoring process. CrossData primarily focuses on providing rich
interactions to facilitate author-driven associations between text,
tables, and visualizations during document creation. Conversely,
our work is centered on devising means to effectively communicate
data evidence relevant to claims. Zhi et al. [106] highlighted the
positive impact of linking visualizations and text in storytelling on
aspects such as comprehension, engagement, and recall. However,
the objectives differ regarding the communication of data evidence,
encompassing efficiency, data consistency, and user confidence in
the verdict. In our work, we explore two visual representations —
data tables and visualization charts, as means to effectively present
data evidence. We assess their impact on efficiency, user confidence,
and preference during the claim review tasks through user studies.

3 A FRAMEWORK FOR DATA CLAIM
FACT-CHECKING AND COMMUNICATION

Although the four-part NLP framework formulated byGuo et al. [31]
encapsulates the essence of fact-checking tasks, the downstream
tasks are rooted in knowledge-based fact-checking research [78, 87,
93] focusing on claims sourced from qualitative evidence. Our work,
in contrast, focuses on fact-checking data claims: natural language
sentences with one or more facts from quantitative information.

Fact/knowledge-based claims and data claims differ in the nature
of their evidence. The former, like the statement “The director of
the movie ‘Oppenheimer’ also directed ‘Interstellar’,” are typically
verifiable through historical records, direct evidence, or established
knowledge. In contrast, a data claim, such as “The total gross of
‘Oppenheimer’ accounts for 20% of the worldwide box office gross
of all films directed by Christopher Nolan,” relies on retrieving and
aggregating a collection of data points across specificmeasurements
(e.g., gross), aligning with the claimed insight type (i.e., proportion)
and matching the asserted value against the gathered data.

While sharing parallel goals with conventional automated fact-
checking endeavors, our focus on data claims necessitates a distinct
approach to processing claims and conveying data evidence. To
align closely with our focus, we have adapted the NLP framework
proposed by Guo et al. [31] to model the automated fact-checking
and communication process for data claims. This modified frame-
work (Figure 1), comprises the following six components:
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Data Claim 
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Data Articles Data Claims Data Fact 
Specifications
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Data Evidence 
Presentation

Backend NLP Pipeline (see figure 2) Frontend Interface (see figure 3)

C1 C2 C3

C5 End User  InteractionC6

C4
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Retrieval

Figure 1: An overview of our modified framework for automated data claim fact-checking and communication, based on Guo et al.’s
framework [31]. The process begins by extracting data claims from data articles. These claims are mapped into data fact specifications
designed to fetch pertinent evidence. This evidence not only aids in determining the veracity of the associated data claim but also serves as
the justification for the verdict. The initial three components constitute a pipeline dedicated to the NLP tasks. This NLP pipeline (Figure 2)
underpins Aletheia’s backend. The last three components connect to Aletheia’s interface (Figure 3).

C1. Data Claim Detection. Our modified framework starts with
the extraction of individual data claims from data articles or reports.
This focus diverges from the conventional NLP approach to claim
identification, which primarily concentrates on assessing the ‘check-
worthiness’ and ‘checkability’ of claims [10, 24, 31, 66, 76].

C2. Text-to-data Mapping. The extracted data claims are trans-
formed into corresponding data fact specifications, with Text-to-
data Mapping accommodating the distinct evidence retrieval pro-
cess and data aggregations involved in data claims. Researchers
have developed frameworks and taxonomies to encapsulate the
diversity and characteristics of such ‘data facts/insights’ [6, 20, 57,
69, 104]. We use the term data fact as the granular representation
of the data insight extracted from the textual claim. Particularly, we
adopt the specifications of data fact from previous research [80, 97]
to define the core data and insight within the claim descriptors such
as data fact types, subspace, value, aggregation, measure, etc.

C3. Data Evidence Retrieval. The data fact specifications are
used to retrieve pertinent data evidence, i.e., the subset of data
directly related to the claim. This process differs significantly from
conventional NLP-focused evidence retrieval that searches for cred-
ible information from large text corpus/knowledge bases [78, 87, 93]
or incorporating additional metadata [96]. In our work, data evi-
dence consists of structured formats of numeric information. For
instance, fact-checking a data claim about COVID-19 trends can
utilize datasets from official/authoritative sources (e.g., WHO [70]).
Thus, our work assumes the availability of a specific dataset to check
against and concentrates on retrieving the relevant data evidence.

C4. Veracity Determination & Presentation. Unlike knowledge-
based fact-checking approaches that rely on pre-existing credible
text excerpts, our method employs the procured data evidence and
the associated data operations.We assess the veracity of a data claim
by comparing the computed values/statistics with those claimed
in the text. Note that veracity assessment can depend on three
fundamental dimensions: clarity at the linguistic level, consistency
with the data at the factual level, and conformity with the logic at the
reasoning level. While our work encompasses steps to disambiguate
the linguistic expressions of data claims, our scope remains on the

factual level — ensuring that the textual description aligns with the
actual data but not considering veracity at the reasoning level.

C5. Data Evidence Presentation. The data evidence and oper-
ations need to be communicated to users for verdict justification.
Unlike presentations used for qualitative evidence [24, 31, 90], our
work involves quantitative evidence, such as the subset of data and
the statistical logic/rules associated with claimed data insights. This
departure leads us into the realm of HCI and data visualization,
which has received limited attention in previous studies [37]. In this
work, we aim to investigate innovative methods for more effective
communication of data evidence (introduced in Subsection 4.2).

C6. End User Interaction. Previous fact-checking frameworks
have often overlooked human involvement, which can improve fact-
checking outcomes by clarifying semantics, correcting AI errors,
and making the fact-checking outcomes more actionable. With
diverse end-users, their interaction needs can vary greatly; for
instance, authors or editors may revise a data article to ensure
accuracy, whereas fact-checkers aim to explain problematic data
claims to a broader audience. Our work addresses these needs by
proposing user interactions with AI-driven fact-checking tools that
can operationalize preceding components effectively.

4 ALETHEIA
We have developed a prototype, Aletheia, to encapsulate these six
components in our framework. Aletheia is an interactive system
with an LLM-based backend and a web-based frontend interface.

4.1 Backend LLM-based Pipeline
A pivotal component in Aletheia’s framework is extracting data
claims and retrieving the pertinent data evidence (C1–C3). This
process converts a data-rich article into a series of data fact specifi-
cations that can be readily employed for data retrieval.

4.1.1 Design Implications for Prompt Pipeline. We conducted a
qualitative content analysis of real-world data claims to guide us
in defining subtasks for our prompt design. We examined sixteen
real-world data articles from various topics and sources, manually
extracting 108 data claims for thematic analysis. This step involved
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individual data facts.
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Resolution
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Extreme
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Rank {JSON}

{JSON}

{JSON}

2 4

5 6 731

PRE PROCESSING Steps core steps

Figure 2: Overview of our LLM-based pipeline, which takes in a data article and outputs JSON specifications used to retrieve data evidence
for each data claim. Seven steps are chained. The first five steps form the “pre-processing phase”, which transforms the input text first into
individual data claims (S1) with compound claim identification (S2), then into distinct data facts (S3) with coreference resolution (S4) and
ellipsis resolution (S5). These data facts are further processed in the last two steps, the “core steps” of our prompt pipeline, which classify the
types of data facts (S6) before converting them into data fact specifications used for retrieving the pertinent data evidence (S7).

identifying key themes, refining initial codes, and engaging in it-
erative discussions to agree on the final codes and themes. The
data claim corpus and the established codes are accessible in the
supplemental materials. Our analysis yielded four main findings,
each leads to an implication for our prompt pipeline design:

Findings Implications

F1. Data claims often include more
than one data fact.

I1. Decompose compound data claims into
multiple independent, individual data facts.

F2. Inconsistent/ambiguous terms
may be used to describe attributes.

I2. Provide the reference dataset’s attribute
list to improve identification accuracy.

F3. The contextual information deter-
mining the subspace may be omitted.

I3. Infer and supplement key information
based on context to determine subspace.

F4. Coreferences are generally used
to represent real-world entities.

I4. Replace coreferences with actual entities
based on context.

Table 1: Findings and implications for prompt design

Summary: The complexity and ambiguity inherent in real-world
data claims require that they be decomposed into simpler, more ver-
ifiable facts, and disambiguated through more precise referencing
and scoping. For example, to verify the claim, “Prices tumbled 1.1%
year-on-year, logging their first annual decline since June 2020” from
a news article [98], the process involves I1 to dissect the claim into
two distinct data facts (i.e., ‘tumbled 1.1%’ and ‘first annual decline’);
I2 and I3 to specify what ‘prices’ refer to, in this case, ‘housing
prices,’ and to define their geographical and temporal scope; and I4
to ensure that ‘their’ refers to ‘housing prices.’

4.1.2 Developing an LLM-based Pipeline. Our content analysis indi-
cates that fact-checking data claims require several NLP tasks. Train-
ing models from scratch for each task requires immense amounts
of data, computational resources, and time. Consequently, we em-
ployed a pre-trained LLM (i.e., GPT-3.5) to address this multifaceted
NLP challenge because it permits flexible pipeline assembly through
iterative prompt engineering [15, 62, 99]. Such flexibility aligns well
with our primary objective: not necessarily to attain peak perfor-
mance but to investigate the viability of a fully–automated fact-
checking pipeline, formulate logical, coherent steps, and garner
insights that can inform subsequent end-to-end optimization.

Pipeline Components. Our proposed NLP pipeline consists of
seven chained steps. Due to the uncertainty in both our pipeline
structure and the LLM’s ability to handle each task during our
initial trial-and-error phase [23], we adopted the notion of LLM-
chaining proposed by Wu et al. [100]. Rather than burdening the
LLMwith the end task of generating data fact specifications directly
from data articles, we split this complex task into smaller, more
tractable sub-tasks. This approach enabled us to build the pipeline
with greater control and transparency of its intermediate steps.
We also use NLTK [63] for sentence tokenization pre-processing.
Figure 2 illustrates the pipeline and briefly explains each step within
it.

S1. Data Claim Detection. This step corresponds to C1 in our
framework.We use GPT-3.5 to classify tokenized sentences as either
a ‘data claim’ or not, guided by our task description and examples.

S2 & S3. Compound Claim Classification and Decomposi-
tion. These two steps address the potential presence of compound
claims (F1). We first ask the model to distinguish if a data claim is a
‘single’ or ‘compound’ claim (S2). The compound claims are subse-
quently decomposed into distinct data facts while the single claims
are kept intact, ultimately producing a list of decomposed data
fact dictionaries (S3). These dictionaries contain both the original
sentence strings and the decomposed data fact strings.

S4 & S5. Coreference and Ellipsis Resolution. Addressing F3&4,
for each data fact string, we instruct GPT to conduct coreference
resolution (i.e., replacing pronouns with entities in the dataset) and
ellipsis resolution (identifying and restoring omitted information,
e.g., year=2023, based on the context of the input data document.

S6. Data Fact Classification. This step classifies each single claim
as one of the ten data fact types. For the prompt, we provide a task
description for classification along with our definitions of each data
fact type, supplementing definitions with specific examples.

S7. Fact Specification Transformation. Next, we instruct GPT
to convert the data fact strings into a type-specific JSON specifica-
tion (Table 2). The JSON specifications are designed to capture the
necessary key-value pairs for fact-checking claims that belong to
the matching type. In this step, the attribute names of the reference
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Fact Types Claim Examples JSON specifications

Value
The average IMDB score for horror movies re-
leased in 2020 is 6.7.

{"measure": “IMDB score”, "value": 6.7, "aggregation": “average”,
"subspace": [{"genre"="horror"},{"year"=2020}], "identifier_key": “movies”}

Proportion
In 2013, Christopher Nolan’s films comprised
34.8% of the total gross formovies with an IMDb
score over 7.

{"measure": “gross”, "value": “34.8%”, "focus": [{"director" = "Christo-
pher Nolan"}], "subspace": [{"year" = 2013}, {"IMDb_score" > 7}],
"identifier_key": “movies”}

Trend
From March 2020 to March 2021, the number of
COVID-19 cases in the US showed an increase.

{"measure": “case”, "value": “increase”, "subspace": [{"date" >= "March
2020"}, {"date" <= "March 2021"}, {"country" = "US"}]}

Extreme
Glenlivet 18 has the highest rating among
whiskies originating from Scotland .

{"measure": “rating”, "value": “max”, "focus": [{"brand" = "Glenlivet 18"}],
"subspace": [{"origin" = "Scotland"}], "identifier_key": “whiskies”}

Rank
Among players in point guards position who
played more than 60 games in 2023, Trae Young
is ranked 4th in three-point attempts .

{"measure": “3PA”, "value": 4, "focus": [{"player"="Trae Young"}],
"subspace": [{"position" = "PG"}, {"games_played" > 60}, {"year" = 2023}],
"identifier_key": “players”}

Association
There’s a positive correlation between amovie’s
budget and its gross earnings.

{"measure_x": “budget”, "measure_y": “gross”, "value": “positive”,
"identifier_key": “movies”}

Difference
During the 2019 NBA season, James Harden
outscored Stephen Curry by 6.1 points .

{"measure": “points”, "value": 6.1, "focus_x": {"player" = "James Harden"},
"focus_y": {"player" = "Stephen Curry"}, "subspace": [{"season" = "2019"}]}

Categorization
There are sevenmovies that have an IMDb score
over 9 and a gross of more than 300 million .

{"value": 7, "subspace": [{"IMDb_score" > 9}, {"gross">"300,000,000"}],
"identifier_key": “movies”}

Distribution
The acceptance rates of colleges follow a right-
skew distribution .

{"measure": “acceptance rates”, "value": “right-skew distribution”,
"identifier_key": “colleges”}

Outlier
The movie “Oppenheimer” has a gross that’s
quite the outlier among historical biopic .

{"measure": “gross”, "focus": {"movie = "Oppenheimer"}, "subspace":
["genre" = "historical biopic"], "identifier_key": “movies”}

Table 2: Examples of the 10 data fact types along with the corresponding JSON output from our LLM pipeline.

dataset are provided in the prompt as contextual information to
improve Aletheia’s ability to accurately parse the semantics.

4.1.3 Veracity Determination. Utilizing the JSON specifications
derived from S7, Aletheia retrieves relevant data evidence from
the provided reference dataset and computes precise values based
on the specified data aggregation and operations. Specifically, for
objective value-based fact types, including value, rank, proportion,
extreme, difference, and categorization, Aletheia directly compares
the claimed value to the actual value. For trend, Aletheia is restricted
to comparing only the two end values within a given timeframe.
For other fact types (i.e., outlier, association, distribution), Aletheia
employs establishedmathematical calculations and rules to evaluate
veracity. For outlier detection, the interquartile range is applied
to identify univariate outliers, while covariance matrix is used
to detect bivariate outliers. The Pearson correlation coefficient is
used to assess association, and the skewness formula is applied to
determine whether a distribution is left- or right-skewed.

4.2 Designing Aletheia’s Interface
Once the veracity is determined and the supporting data evidence
is obtained, the results must be effectively communicated to the
audience, substantiating the verdict with interpretable evidence
and explanations, and empowering practitioners to act upon these
insights. This section addresses this challenge by designing visual

representations for demonstrating data evidence (C5) and interac-
tions to support actions from practitioners (C6).

4.2.1 Designing Data Evidence Representations. Existing research
lacks comprehensive guidance on effectively presenting data evi-
dence. Thus, our main objective is to explore the design space for
representing data evidence. We specifically focus on two common
approaches: data tables and visualization charts. Data tables, as a
conventional and widely accessible form of data representation in
the data fact-checking workflow, serve as a baseline. Visualization
charts, known for their capacity to handle larger datasets, improve
readability [45], and enhance human cognition through rapid per-
ceptual inference and pattern recognition [26], may offer a more
efficient means of presenting data evidence. We propose designs
for data table and visualization chart representations tailored to 13
subcategories derived from 10 data fact types: value (mean), value
(median), value (sum), proportion, trend, extreme, rank, association,
difference, categorization, distribution, 1-D outlier, and 2-D outlier.

To develop these designs for data fact-checking, we identified
the following three design goals. Our designs are also informed
by literature on foundational visualization values [26] and strate-
gies counter cognitive biases (e.g. [39]). We engaged in an iterative
design process with active participation from two authors and feed-
back from a senior visualization researcher. Details of our design
choices and the corresponding illustrations for both the data tables
and the visualizations are available in the Appendix A. Further
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Figure 3: Aletheia’s interface. Users enter textual content and select/upload a reference dataset in Input View (A). The backend then detects
data claims, retrieves corresponding data evidence, and verifies them. The fact-checking results are presented in Result View (B), utilizing
color codings to signify their verdicts: accurate, inaccurate, and unverifiable. Users click on the highlighted data claims to access the Evidence
View (C). This view contains the designed data evidence presentation and interactions.

design details and enlarged versions are available in the supplemen-
tary materials.

DG1. Ensure alignment with the original data insights con-
veyed by the data claim. Each data fact type inherently provides
a unique insight. For example, Rank (Figure 8 V7) highlights an en-
tity’s position within a group. Effective verification of the accuracy
necessitates that the evidence representation not only corresponds
with the insight (e.g., the particular rank, ‘8th’) but also encapsu-
lates the scope of the relevant data (e.g., a sorted list that includes
the rank). Similarly, a Categorization fact (Figure 8 V10) indicates
an entity’s affiliation with a subset of entities. Thus, the design
should display the entity, the intersection, and the inclusion crite-
ria. The variety of insight types emphasizes the need for customized
representations tailored to specific data fact types or subtypes.

DG2. Streamline viewers’ analysis of data evidence, facili-
tating quicker judgments. Efficiency is key in designing data
evidence presentations for fact-checking, as it could enhance pro-
fessionals’ productivity and increase general readers’ adoption. To
achieve this goal, we embraced three key design approaches. First,
we display only the relevant data segments, eliminating the need
to sift through the full dataset. Second, we highlight and annotate
salient elements, especially data points mentioned in the claim.
Third, for claims involving derived statistics, we automate data op-
erations and computation to directly show the summary statistics.

DG3. Bolster viewers’ confidence in their assessments. An-
other critical element we emphasize is viewers’ confidence in their

judgment. Given that both the verdict and the representation pro-
vided are rooted in the same data evidence, we posit that a represen-
tation that boosts viewers’ confidence can also enhance their trust
in the system’s ability to retrieve accurate evidence and process it
appropriately. We first ensure the transparency of data operations
either by incorporating operation widgets (Figure 3 C1) or directly
through visual encodings. Next, we emphasize the presentation of
individual data points, aiming to provide an overview of the data
distribution that allows for a ‘sanity check.’

4.2.2 Interface Design. In addition to designing evidence represen-
tations, we explore the feasibility of integrating them into an interac-
tive application along with our proposed fact-checking framework.
We envision a scenario where authors must verify and rectify inac-
curate data claims, and thus propose three key design requirements:

DR1. Facilitate rapid reviewing and correction of erroneous
claims. Upon receiving fact-checking results, authors naturally
want to review the verdicts and supporting data evidence. This
review allows them to decide whether to trust the results and take
action, e.g., to correct inaccuracies in the data claim. Thus, an inter-
active system should streamline the review and revision process.

DR2. Enable user intervention for AI mistakes. AI mistakes
may occur when GPT incorrectly infers the data subspace or corefer-
ences (S4&5), especially when keywords are missing or ambiguous
in the data claim. Also, GPT may incorrectly parse a focused at-
tribute (S7). Under these circumstances, it is critical to incorporate
human supervision and intervention for enhanced reliability.
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DR3. Support integration of additional reference data. Real-
world articles can simultaneously rely on multiple datasets with
varying contexts, thereby posing a challenge when attempting to
fully automate the fact-checking process. Enabling users to add
additional reference datasets to evaluate claims that are initially un-
verifiable could enhanceAletheia’s utility. Furthermore, considering
users’ potential unfamiliarity with the ‘suitability ’ [91] of reference
data, the system should provide support for users to assess whether
a dataset is appropriate for verifying certain data claims.

4.3 Aletheia Workflow and Usage Scenario
We integrated our LLM-based pipeline with the interactive user
interface, resulting in a functional prototype, Aletheia. The backend
of Aletheia is built on Python Flask, leveraging OpenAI (GPT-4) for
its NLP tasks. The frontend is developed using React, with the visu-
alizations implemented in D3.js. As shown in Figure 3, Aletheia’s
interface has three main views: an input view (A), a result view (B),
and an evidence view (C). To illustrate the utility of Aletheia, con-
sider the scenario of a sports editor, Jordan, tasked with reviewing
the accuracy of a written article containing various data claims.

Jordan first loads the draft article of NBA MVPs into Aletheia’s
Input View, and selects a reference dataset of players’ average statis-
tics from Basketball-Reference, an authoritative sports data platform.
Upon requestingAletheia to verify the claims, the Result View gener-
ates a fact-checking report with the data claims color-coded. Jordan
navigates through these data claims and toggles between table and
visualization forms to examine the data evidence. This interaction
helps him further assess the verification results and determine if he
should apply a quick correction suggested by Aletheia. For instance,
as shown in Figure 3 C2, Aletheia recommends correcting a rank-
ing value error from ‘4th’ to ‘8th’ based on the computed results.
Aletheia also supports a ‘quick rectify’ action, which can be useful
when many instances of text-data misalignment occur (e.g., during
data updates). These system functions support DR1.

To mitigate the risks associated with inferential mistakes (DR2),
Aletheia provides an interactive widget (Figure 3 C3). This widget
displays the key AI inferences, with filters for tuning the subspace,
coreferences, and focused attributes. Jordan hovers through these
‘chips’ to examine associated text segments, and identifies that
the AI overlooked a filter (Position=Center), which should have
been applied to the phrase ‘among all centers’ in the claim. Aletheia
enables him to directly edit these ‘chips’ to override the AI’s inferred
elements, i.e., to add missing filters. This action prompts Aletheia to
reassess the associated claim based on Jordan’s modifications and
simultaneously propose a text revision reflecting these adjustments.

After addressing the discrepancies flagged in red, Jordan encoun-
ters two claims marked as ‘unverifiable’ (Figure 3 C4). To resolve
these, he imports new datasets for targeted evaluation. These extra
datasets are bound to individual claims and do not impact other
verified claims. Employing Aletheia’s data relevance evaluation func-
tion, which leverages the GPT model to assign a ‘suitability score’
based on the attribute names and the claim, Jordan can quickly com-
pare and identify the most pertinent datasets (DR3). This prompts
Aletheia to reassess the accuracy of the targeted claim.

5 PROMPTING FRAMEWORK EVALUATION
In this section, we evaluate the feasibility of Aletheia’s LLM-based
pipeline, with a particular focus on two core steps: data fact classi-
fication (S6) and data facts specification transformation (S7 ) in
Figure 2. We focus on these core steps for three reasons. First, con-
ducting a comprehensive evaluation requires viable testing datasets
of data documents with corresponding reference datasets, which
are currently unavailable and expensive to curate. Second, our ini-
tial experiments with real-world data articles (e.g., [58, 64]) indicate
that GPT is competent in identifying data claims from passages/ar-
ticles; our unoptimized prompt achieved an accuracy of 87.2% and
93.1%, respectively (see the supplementary materials). Third, al-
though we utilize GPT to perform the pre-processing steps, the
downstream tasks (e.g., coreference, ellipsis resolution) have been
extensively explored in NLP research, with pre-trained statistical
models showing increasing capabilities [8, 44].

5.1 Data Curation
Existing benchmarking datasets for automated fact-checking (e.g.,
FEVER [89], LIAR [96], MultiFC [12], ClaimBuster [9], etc.) pri-
marily focus on text-sourced (i.e., knowledge-based) claims. For
example, LIAR [96], based on human-labeled shorts claims from
PolitiFact [71], includes statements like “Newly elected Republican
senators sign pledge to eliminate food stamp program in 2015.” These
text-sourced datasets do not align with the focus of this work, and
there is a notable absence of open-sourced benchmarking datasets
tailored for data claims. In the limited body of work specifically
addressing data/statistical claims (e.g., [47, 75]), training/testing
datasets are often synthesized with templates due to the scarcity of
benchmarking datasets. In this work, we employ a similar template-
based data curation approach, focusing more on diverse types of
data insights [80, 83, 97] to cover a range of insight categories.

We programmatically curated ground truth claims for 10 ag-
gregated data fact types, generating 40 template-based claims per
type along with their corresponding data fact JSON specifications,
following Table 2. To better represent the language variation in real-
world claims, we employed GPT to produce a paraphrased version
of each claim. We compiled a dataset of 400 test claims, each fea-
turing data fact specifications, a claim generated from type-specific
templates, and a paraphrased version. We manually reviewed the
paraphrased claims to ensure they preserved the original data facts.

5.2 Evaluation Results
Data Fact Classification. We tested our data fact type classifier on a
balanced dataset of 400 paraphrased examples using GPT-4. GPT-4
achieved perfect classification against natural language variation.
The results indicate that an LLM can robustly classify data
facts into types following the data fact taxonomy, simplifying
previous approaches that required multiple algorithms [94].

Fact Specification Transformation. Next, we test our fact specifica-
tion transformation step, taking the preprocessed, GPT-paraphrased
claims as input and outputting a JSON specification for each claim.
We present matching accuracy for each data fact type in Figure 4,
with the green area representing complete matches (i.e., the gener-
ated JSON exactly matches the ground truth) and the red area the
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partial matches (i.e., parts of the generated JSON match those in
the ground truth). There are no cases in which the ground truth is
entirely missed, and the ratio of partial matches is also represented
below each red box.

Match Rate

100.0%Trend

97.5%Value

87.5%Categorization

100.0%Distribution

100.0%Rank

87.5%Extreme

100.0%Outlier

45.0%Proportion

80.0%Association

97.5%Difference

Figure 4: Success rate of data fact specification transformation. Each
row corresponds to a distinct data fact type. Boxes within the rows
represent individual examples. Green boxes indicate successful
transformations, where all transformed attributes and values match
the ground truth. Red boxes represent examples with incomplete
or incorrect conversions. The small rectangles below the red boxes
represent partial match performance with the same color code. The
average rate of complete matches is 89.5%.

Across all data fact types, the average rate of complete matches
is 89.5% (𝜎 = 16.27), which means that nearly 90% of the generated
JSONs are fully usable for data evidence retrieval. For comparison,
state-of-the-art LLMs for code generation, when given a single trial,
produce executable code around 20-40% of the time (see “Pass Rate”
or “Pass@1” in [19, 59]), showing how much more challenging
the generation of executable representations is when compared
to classification tasks such as in Section 5.2. We consider the cur-
rent average rate of complete matches (89.5%) positive evidence
that an LLM can be used to generate well-formed data fact
specifications, allowing for automated systems such as Aletheia.

5.3 Failure Case Analysis
Nevertheless, there is more room for improvement in fact specifi-
cation transformation: the fact type “Proportion” has the lowest
rates (45%) of complete matches. The primary cause of failure can
be traced back to the parsing of data filters — achieving a com-
plete match in the subspace requires identifying all applied filters.
Consider a Proportion data claim: “In 2013, 75.59% of the budget for
Italian movies was spent on movies with an IMDB score higher than
6.” A full match in parsing requires the detection of a focus space
filter (IMDB_score ≥ 6) and two subspace filters (released_year =
2013 and country = Italy). This complexity explains why Proportion
type has the lowest complete matching score — it requires not only
the identification of all filters but also a clear distinction between
focus_space and subspace. This bottleneck could justify adding new
steps to our pipeline to better perform this task for this specific set
of fact types. It is important to note that data claims can become
more complex regarding fact type, semantics, and compoundness,
posing greater challenges. We further discuss Aletheia’s limitations
and future opportunities in Section 9.

6 USER EVALUATION OF DATA EVIDENCE
REPRESENTATIONS (CHARTS & TABLES)

We conducted a mixed-method user study with 20 participants, us-
ing our 26 data evidence representations (Subsection 4.2) as probes
to gather quantitative behavioral insights and qualitative feedback.

Participants Demographics. We recruited a total of 20 participants
from our institution for the study, comprising 12 males (60%) and 8
females (40%). The majority, 18 participants, are aged between 25
and 34, with 2 aged 18 to 24. All are either graduate degree holders
or candidates, with diverse backgrounds in statistics, data analysis,
data visualization, and varying experiences with data articles.

Data Curation. To maintain a consistent and reliable study envi-
ronment, we chose a manually curated, predetermined test dataset
over real-time API calls to GPT, due to the potential for the model’s
variable runtime to disrupt controlled conditions. We curated four
data claims — two accurate and two inaccurate ones — for each
of the 13 data fact types. To reduce participant workload, we split
the 52 test data claims into two datasets. Each dataset contains an
accurate and an inaccurate claim for every fact type, resulting in
26 tasks per participant per study phase (2*13).

User Study Interface. Given the interactive features of our data evi-
dence representations and the need to monitor assessment duration,
we devised a study-tailored interface (Figure 9) based on Aletheia.
This study interface consists of five components: a tutorial page (C),
two study session pages (A & B), a page for visualizing participants’
results (D), and an “Exploration Page (E)” that helps participants
review the representations and answer interview questions.

6.1 User Study Procedure
Our study consists of three phases. Phase I and Phase II focus on
collecting quantitative data on assessment time (tracking), confidence
shift (self-reporting), and preference (self-reporting). Phase III is a
post-study interview. A detailed interview protocol is available in
the supplemental material. The entire study process was video-
recorded, and the audio was transcribed for qualitative analysis.

Phase I. Participants were randomly given one of the two datasets
in a counter-balanced manner and assigned to either the Table
Group (Group A) or the Visualization Group (Group B). Each group
used the respective data evidence representations to review the
data claims. Prior to assessing the claims, participants underwent
a five-minute tutorial session to familiarize themselves with the
data encodings for various data fact types. We also showcased the
interface for Phase I using a demo dataset.

During the main part of Phase I (shown in Figure 9 (A)), partic-
ipants were sequentially presented with individual claims. They
were instructed to read the claim carefully and then click the “Ver-
ify” button to view the model’s verdict. The system then fetched the
corresponding data evidence and displayed a verdict stating “The AI
determines this claim to be accurate/inaccurate.” Participants were
informed beforehand that the “AI prediction” might be inaccurate
and should only be considered as a reference. After viewing the
verdict, participants were instructed to assess the veracity of the
claim based on the data evidence revealed after clicking the “Show
Data Evidence” button. A timer started upon the appearance of
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the visual representations. After reviewing the data evidence, par-
ticipants indicated their decision by selecting either “Accurate” or
“Inaccurate”, which simultaneously stopped the timer. Participants
also self-reported their confidence level on a scale from 1 to 5.

Phase II. At the beginning of Phase II, participants spent five min-
utes familiarizing themselves with the counterpart representations
(i.e., participants in the Table Group were presented with visual-
izations in this phase and vice versa). We again showcased the
interface for Phase II using a demo dataset. Participants performed
the same fact-checking task as in Phase I, but with counterpart
representations. After making a judgment, participants’ confidence
level from Phase I was disclosed, along with the corresponding
Phase I representations (as shown in Figure 9 (B)). Participants
were instructed to compare their confidence with their confidence
Phase I ratings. Additionally, we asked participants to self-report
their preference between the table and visualization representation
for fact-checking the current claim using a five-point scale.

Phase III. Concluding the study, we presented a summarized vi-
sualization illustrating the participant’s confidence shift and pref-
erences between the two study parts (Figure 9 (D)), followed by a
semi-structured interview to gather insights about their thinking
process, perceived advantages/disadvantages, and feedback on both
representation methods. During the interview, participants could
use the “Exploration Page” (Figure 9 (E)) to navigate the reviewed
claims and the two corresponding visual representations while
answering questions.

6.2 Quantitative results
We report four measurements: (A) time-spent assessing the data
evidence in Phase I, (B) confidence shift between the data evidence
representation forms in Phase I and Phase II, (C) preference and
(D) accuracy between the two data evidence representations. The
results are shown in Figure 5.

Time-spent. We applied theMann-Whitney U test at a significance
level of 0.05 to determine whether there existed any statistically
significant differences between the table and vis representation
types across various data fact types. In general, participants who
used visualization charts to assess the claim spent less time (𝑀 =

7.9, 𝑆𝐷 = 6.1) than those who used data tables (𝑀 = 15.0, 𝑆𝐷 = 10.7)
in Phase I. This time efficiency was consistent across all fact types,
with statistical significance identified in the majority of fact types
(8 out of 13), including Distribution (𝑈 = 370.0, 𝑝 < 0.001), Trend
(𝑈 = 326.5, 𝑝 < 0.001), Rank (𝑈 = 287.5, 𝑝 < 0.03), Association
(𝑈 = 375.0, 𝑝 < 0.001), Outlier (Univariate) (𝑈 = 362.0, 𝑝 < 0.001),
Outlier (Bi-variant) (𝑈 = 373.5, 𝑝 < 0.001), Value (Median) (𝑈 =

289.5, 𝑝 < 0.03), and Extreme (𝑈 = 276.0, 𝑝 < 0.05). No significant
differences were observed in the rest of the data fact types. More
detailed mean, U-value, and p-values for each data fact type under
two representations are reported in Figure 5, with the statistically
significant conditions marked in green.

Average confidence shift. Confidence shift is quantified using a
five-point scale: -2 (much more confident with table), -1 (more con-
fident with table), 0 (about the same), 1 (more confident with visu-
alization), and 2 (much more confident with visualization). Positive

values indicate higher confidence on average with visualizations
for fact-checking, whereas negative values suggest the opposite. In
general, vis has slight advantage over table in enhancing user con-
fidence (𝑀 = 0.56, 𝑆𝐷 = 0.87). While this advantage is consistently
observed across all fact types, it is most pronounced (𝑀 > 1) for
Association (𝑀 = 1.48, 𝑆𝐷 = 0.74), Trend (𝑀 = 1.33, 𝑆𝐷 = 0.66), and
Outlier (Bi-variant) (𝑀 = 1.28, 𝑆𝐷 = 0.85). On the contrary, the least
advantage was observed in types including Value (Sum), Proportion,
Categorization, Difference, Rank, Extreme, and Value (Mean) with
average confidence shifts less than 0.2.

Preference. Preference is measured using the same five-point
scale: [-2 (strongly favor table), -1 (favor table), 0 (neutral), 1 (fa-
vor visualization), 2 (strongly favor visualization)]. Positive val-
ues indicate that participants prefer visualizations over tables for
specific fact types, whereas negative values suggest a preference
for tables. Overall, participants showed preference on vis over ta-
ble (𝑀 = 0.81, 𝑆𝐷 = 1.17). This observation is consistent for the
majority of the data fact types (11 out of 13), except Proportion
(𝑀 = −0.08, 𝑆𝐷 = 1.12) and Value (Sum) (𝑀 = −0.28, 𝑆𝐷 = 1.04).
Notably, participants exhibited the most pronounced preference on
vis for fact types including Association, Trend, Outlier (Univariate),
Outlier (Univariate), Outlier (Bi-variant) and Distribution with an
average preference score over 1.7.

Accuracy. Both groups exhibit high accuracy when determining
the veracity of the data statements. The overall accuracy (under
time pressure) is 90.19% (𝜎 = 0.3). The table group achieved 89.62%
accuracy, while the visualization group achieved 90.77%. The accu-
racy was higher for objective value-based claims, including Rank
(100%), Proportion (100%), Difference (97.5%), Categorization (95%),
Value(Mean) (97.5%), Value(Median) (95%), Value(Sum) (100%), Trend
(87.5%), Extreme (100%), and lower for subjective ones, including
Outlier (Univariate) (67.5%), Outlier (Bivariate) (65%), Association
(78%), Distribution (93.3%). While the overall difference in detection
accuracy is not significant, the visualization group achieved notably
better accuracy in Association (88% vs. 68%) but lower accuracy in
Outlier facts (60% vs. 72.5%). The lower detection accuracy inOutlier
facts can be attributed to the subjective nature of visual interpre-
tation and varying algorithms and thresholds used to determine
outliers. Nevertheless, the overall high detection accuracy indicates
that our designed representations can effectively assist users in
identifying inaccurate claims under time pressure.

6.3 Findings and Takeaways
T1. Visualizations inherently offer advantages when fact-
checking data claims related to patterns or distributions
across numerous data points. Visualizations exhibit pronounced
advantages over tables when verifying association, distribution, out-
lier, and trend data fact types, which is evident across all measure-
ments: time-spent (Figure 5A), participants’ confidence (Figure 5B)
and preference (Figure 5C). Participants commonly expressed that
visualizations are significantly more helpful for determining the
veracity of data claims that necessitate an ‘overview of the data.’
Particularly, P12 stated that “Visualizations is just a lot clearer than
looking at a data table, especially if the table has a lot of rows you
have to scroll through and process all of those information”. This



“The Data Says Otherwise” – Towards Automated Fact-checking and Communication of Data Claims UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Asso
cia

tion

Cate
go

riz
ati

on

Differe
nce

Dist
rib

u

tion Extr
em

e

Outlie
r 


(Bi-v
ari

an
t)

Outlie
r 


(Univa
ria

te)
Propor

tion Ran
k

Tre
nd

Valu
e (

Mea
n)

Valu
e (

Med
ian

)

Valu
e (

Su
m)

Ti
me

 S
pe

nt
 (

s)

VIS

TABLE

p = 2e-06***

U = 375.0


v_mean = 9.6

v_sd= 7.3


t_mean = 31.1

t_sd = 15.3



p = 0.088

U = 263.5


v_mean = 9.6

v_sd = 7.2


t_mean = 12.2

t_sd = 6.8


p = 0.860

U = 193.0


v_mean = 7.2

v_sd = 2.9


t_mean = 7.4

t_sd = 2.9


p = 5e-06***

U = 370.0


v_mean = 4.5

v_sd = 3.7


t_mean = 14.3

t_sd = 7.2

p = 0.041*

U = 276.0


v_mean = 7.5

v_sd = 4.4


t_mean = 10.7

t_sd = 5.3

p = 3e-06***

U = 373.5


v_mean = 7.5

v_sd = 8.2


t_mean = 24.7

t_sd = 11.0

p = 1.2e-05***

U = 362.0


v_mean = 6.1

v_sd = 5.6


t_mean = 19.9

t_sd = 10.6

p = 0.096

U = 262.0


v_mean = 11.9

v_sd = 7.4


t_mean = 18.4

t_sd = 12.7

p = 0.019*

U = 287.5


v_mean = 6.2

v_sd = 3.6


t_mean = 9.4

t_sd = 4.1

p = 0.0007**

U = 326.5


v_mean = 8.3

v_sd = 5.1


t_mean = 16.6

t_sd = 9.8

p = 0.074

U = 266.5


v_mean = 7.7

v_sd = 5.7


t_mean = 9.6

t_sd = 4.2

p = 0.016*

U = 289.5


v_mean = 7.9

v_sd = 6.5


t_mean = 11.1

t_sd = 5.6

p = 0.163

U = 262.0


v_mean = 8.8

v_sd = 6.8


t_mean = 9.8

t_sd = 4.2


A

0

10

20

30

40

50

60

70

Rank

Proportion

Association

Value (Median)

Outlier (Univariate)

Trend

Distribution

Difference

Value (Sum)

Categorization

Extreme

Value (Mean)

Outlier (Bi-variant)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Ta
bl

e

Visualization

Preference

C 0.175

0.375

1.7

1.92

0.2

1.65

1.625

-0.075

-0.275

0.2

1.90

0.375

0.65

Rank

Proportion

Association

Value (Median)

Outlier (Univariate)

Trend

Distribution

Difference

Value (Sum)

Categorization

Extreme

Value (Mean)

Outlier (Bi-variant)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Ta
bl

e

Visualization

Confidence Shift

B
1.48

0.93

0.15

1.275

0.975

0.075

0.15

1.325

0.2

0.35

0.025

0.1

0.15

Association
Categorization

Difference
Distribution

Extreme
Outlier (Bi-variant)

Outlier (Univariate)
Proportion

Rank
Trend

Value (Mean)
Value (Median)

Value (Sum)
100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

← More Confident with Table Neutral More Confident with Visualization →

Confidence Shift Distribution

D Association
Categorization

Difference
Distribution

Extreme
Outlier (Bi-variant)

Outlier (Univariate)
Proportion

Rank
Trend

Value (Mean)
Value (Median)

Value (Sum)
100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

← Favor Table More Neutral Favor Visualization More →

Preference Distribution

E

Figure 5: Quantitative results from our user study with 20 participants comparing visualizations and tables as different data evidence
presentation forms. (A) The distribution (box) and individual (point) time taken to assess the accuracy of thirteen distinct data facts. The
x-axis represents the data fact types, while the y-axis indicates the duration in seconds. The two diverging bar charts show the average shift
in (B) the viewers’ confidence and (C) their preferences across the thirteen data fact types. Right-pointing bars signify that participants have
greater confidence in their assessment when using the visualization, or they prefer to use visualizations for fact-checking the respective
data facts. Conversely, left-pointing bars indicate greater confidence or preference for tables. Figures (D) and (E) display the percentage
distribution for each response option regarding confidence shift (D) and preference (E). The length of the bars represents the percentage of
each selection on the five-point scale. Gray bars represent Neutral. Orange bars represent Table while purple bars represent Visualization.
Darker red and purple signify greater intensity (i.e., much more confident/strongly favor).

advantage can become more prominent for bigger datasets. Inter-
estingly, extreme, rank, and value (median) also exhibited statisti-
cally significant time improvements in visualizations over tables.
Given that statistics are readily available in the data table, verifying
these claims only requires participants to process a single number.
However, statistical significance was not found in categorization,
difference, proportion, and value (mean&sum), five data types with
similar settings. We anticipated that the visualization representa-
tion of the ranked bar chart for these three data types, offering
visual confirmation of accurate sorting, could potentially reduce
the time needed for viewers to be persuaded.

T2. Displaying data operationwidgets accelerates assessment
and boosts confidence. We included operation widgets (Figure 3
C1) to indicate data operations in both table and visualization rep-
resentations. 19 participants agreed that these widgets bolstered
their confidence in the system retrieving the correct data evidence.

Participants noted that their initial mental task upon seeing the
data evidence was to align the keywords with the filtering widgets.
P6 stated that “it [showing widgets] is big, because I need to know,
especially when a data claim is being made over a subset”. P4 con-
curred that “these [filter widgets] are the ones that really affect my
confidence. . . it gives me an understanding of what subset of data the
person was trying to analyze.” Seeing these widgets also expedited
their assessment, as it obviated the need to scrutinize individual
values to confirm their presence in the subspace. In particular, P20
emphasized that “[not showing filters] would impact visualization
a lot more” because “[in table], I can quickly see it [the relevant in-
formation]”. Though only occasionally checked the widgets, P10
recognized the importance of them:“[knowing] what they present
matters a lot, and I can take a look any time I want.” However, there
was one outlier (P8), who assumed the data evidence was correctly
retrieved, therefore, examining the widgets “made me spend a little
bit more time and had no effect on my confidence.” P2 also indicated
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that once they established trust in Aletheia’s ability to apply the
correct filters, they paid less attention to the widgets.

T3. Unit representations enhance confidence, even when not
scrutinized. During the interview phase, participants reflected
on their attention to unit representations and how their absence
might affect their confidence regarding fact types linked to specific
summary statistics. While all participants agreed that they did not
scrutinize the visual elements representing individual values, 15
out of 20 participants agreed that displaying summary statistics
alone would reduce their confidence compared to pairing them
with unit representations because the unit representations allow
them to verify that the data distributions align with the aggregated
statistics. For example, P2 stated that “I want to see raw data to make
sure that the thing that I’m consuming is accurate.” P7 elaborated on
verifying computed values based on the underlying raw data: “This
is one way of confirming that the average is correct. . . if the [average]
bar is somewhere in the middle.” P17 expressed that “without any
individuals, you don’t have a global understanding about the data
points distribution.” Three participants (P1, P5, P18) emphasized
the need for visualizations where the distribution of units offers
greater value for a "sanity-check” of the provided statistics than
mere “numbers” in the table.

T4. Contextual information can be both reassuring and dis-
tracting in customized visualization. For the data fact types
requiring only single summary statistics to verify the claim, we
provide contextual information using different visual techniques.
Three particular visuals — value (sum), proportion, and categoriza-
tion — are particularly customized, but received low preference on
average. A common reason cited by our participants during the
interview phase was that these fact types solely require aggregated
statistics to assess their veracity after confirming the subspace and
focus, and it can take additional effort to process the additional
contextual information. Participants also mentioned their strug-
gle with unfamiliar chart types, leading to slower comprehension.
For example, P10 explained that “. . . it took me more time to un-
derstand the mapping. . . so I feel a little bit distracted when trying
to extract useful, relevant information to do the fact-check.” Partic-
ipants also appreciated the assurance of contextual information
provided. P10 particularly liked the proportional Venn diagram,
“it’s just nicer. . . you get more information. . . for fact-checking, the
context helps because it gives you an assurance that the data is valid
and there’s no arbitrary thing.” P15 pointed out that when it comes
to sum values, “using visualization, there is no concern about the total
[sum operation] because the height should be the [total] height of
each one.”

T5. Highlighting salient information streamlines the fact-
checking process. All participants concurred that a crucial mental
step in fact-checking data claims involves extracting salient infor-
mation from both the text and data evidence and then verifying
their alignment. Participants also acknowledged that our design
decision to highlight and annotate salient visual elements aids in
accelerating this process. Participants who preferred tables over
visualizations for “one-number” fact-checking noted that tables
provided them a clear location to focus on, typically the last sticky
row we highlighted in the table. P5 expressed that“I know where to

expect to see it,”. However, it is not as consistent with visualizations,
even though the visualizations included annotated labels with the
same information. Participants in favor of the visualizations em-
phasized the intrinsic value of visualization as a form of abstract
information. For example, P7 stated that the “it [visualization] just
abstracts away all the information that I don’t need to know.” P17
added that “abstracted information that corresponds to the statement
is way more efficient” when it comes to fact-checking.

Design Recommendations for Presenting Data Evidence.
Drawing on our quantitative results, qualitative findings, and reflec-
tions on design, we derive four general design recommendations:
(1) Display data operations, especially the filters: Regardless of

the presentation format, our findings suggest the importance of
consistently displaying the data operations executed to retrieve
relevant data evidence and calculate aggregated statistics, par-
ticularly the filters used to determine the subspace (T2). Such
transparency enhances viewers’ trust in data validity.

(2) Make salient information visually predominant: After
viewers establish trust in data validity, they search for the salient
information crucial to determining veracity (observed in T5).
This salient information typically includes elements like value,
measure, and focus depending on the fact type. Making these
elements visually predominant in the evidence presentation
will streamline the verification process.

(3) Key informationfirst, contextual information on-demand:
Contextual information can enhance understanding and bolster
trust, but an excess may overwhelm viewers since context is not
essential for assessing fact-level veracity (as suggested in T4).
Therefore, we recommend abstracting such information and
enabling viewers to access it on demand, i.e., via interactions.

(4) Enhance readability with visual aids: While Aletheia offers
computed statistics, comparing raw numbers becomes challeng-
ing when the values are large (e.g., movie grosses). As favored
by participants (T5), we suggest incorporating visual aids in vi-
sualization, like an additional line indicating the “claimed value”,
to ease comparison. Visual aids (e.g., colored underlines) can
also be utilized to highlight the mapping of entities, attributes,
and filters between textual references in claims and visual coun-
terparts in representations, facilitating more efficient “sanity
check”.

7 APPLICATION SCENARIOS FOR ALETHEIA
We design Aletheia specifically to assist authors and editors in the
task of ensuring accuracy within data-rich articles. Given that many
news organizations have already established their data infrastruc-
ture, inserting a system like Aletheia in their editorial workflow
could markedly enhance their efficiency. Additionally, the method-
ologies underpinning Aletheia can be seamlessly integrated with
data article authoring tools, such as CrossData [21], DataTales [85],
reinforcing the accuracy of content produced.We envisionAletheia’s
adaptability across diverse user groups, with potential applications
ranging from browser extensions with reference data plugins for
general news readers to fact-checking social media posts, financial
reports and data-driven claims in other domains. Given these di-
verse applications, we propose the following two recommendations
for tailoring Aletheia to specific domains or contexts:
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Figure 6: An example of showing contextual information. The data
claim is “The unemployment rate experienced a decrease between
April 2020 and March 2023.” While the claim is technically accurate,
it might be suspected of “cherry-picking the timeframe”. Displaying
the context can help inform audiences about the potential ‘pitfall.’

Leverage in-context examples in LLM prompts to enhance
NLP task performance and accommodate domain-specific
requirements. We provide in-context examples in prompts for
multiple NLP tasks in Aletheia. The LLM’s flexibility enables easy
customization of the pipeline to meet domain-specific requirements
through mere modifications of the in-context examples and their
associated definition and reasoning. Consider the case of a data
fact not present in the data fact taxonomy, such as the “prominent
streak” [42]. If this type of data claim is prevalent in a domain
(e.g., sports), one can integrate its definition, examples, and desired
output specifications in the chained prompts, thereby enabling LLM
to retrieve the corresponding data evidence.

Tailor data evidence representations for specific user groups,
associated tasks, and domain conventions. While our 13 pairs
of type-specific data evidence representations cover common data
fact types, they are not exhaustive. Additional data fact types will
require customized evidence presentations. For instance, a sequen-
tial bar chart that highlights instances meeting (or not meeting)
specific conditions would be appropriate for representing a promi-
nent streak data fact. Furthermore, we recommend using our data
evidence designs as a baseline, tailoring them to the needs of tar-
get users and domain characteristics/conventions while adhering
to our general design guidance. For instance, in contexts where
“cherry-picking data” [61, 94] is a concern, it is recommended to
add visual elements that present more contextual information; for
example, supplementing a line graph that depicts the trend with an
overview (example shown in Figure 6) can provide added context
to “cherry-picking timeframes”, potentially assisting audiences in
better judgment about the original claim.

8 LIMITATIONS
Sole focus on fact-level assessment. While our method priori-
tizes verifying the underlying data facts, it is important to acknowl-
edge the potential logical fallacies or misinterpretations that could
undermine the plausibility of the resulting conclusions. Consider
extending the example presented in Figure 6 to “the unemployment

rate experienced a decrease between April 2020 and March 2023, in-
dicating a strong job market.” Although the initial part of this data
fact may be technically accurate, the concluding inference might
not hold true. The claim omits the ‘spike’ in March 2020, coinciding
with the COVID-19 pandemic lockdowns in many U.S. states.

Require manual selection of reference dataset. Another lim-
itation of Aletheia is the need for users to manually select or up-
load suitable reference data for fact-checking. In real-world sce-
narios, however, data articles or claims may derive from various
data sources. Furthermore, the users may have limited access to, or
knowledge of, such datasets, which restricts their ability to select ap-
propriate reference data. Although Aletheia currently incorporates
features that facilitate this process (i.e., allowing for incorporat-
ing additional reference dataset and leveraging GPT to assess the
suitability of a dataset for fact-checking), there is room for further
enhancement through the adoption of more sophisticated tools.
This includes developing more reliable mechanisms to evaluate the
suitability of available datasets and automated methods to extract
reference data from extensive data infrastructures and reconcile
synergies and conflicts among multiple datasets.

Lack of comprehensive optimization and evaluation of the
LLM-based pipeline. We acknowledge that there is potential for
further optimization of our NLP pipeline (Figure 2) to enhance
its effectiveness and undergo a more comprehensive evaluation.
It’s noteworthy that the modular structure of our chained LLM-
based pipeline offers significant flexibility in the choice of models
for downstream tasks. Future work could explore substituting or
comparing the LLM-based approach with more established NLP
methods for specific steps (e.g., statistical models for coreferences
and ellipses resolution [8, 44]) and experimenting with different
sequences of steps.

User study designs. One study limitation pertains to the demo-
graphics of our study participants. While our participants exhibit
diverse interactions with and trust in data articles/reports, they are
uniformly graduate students who are likely more proficient with
data compared to other potential user groups (e.g., fact-check pro-
fessionals and general news readers). Therefore, we consider our
quantitative results to be more relevant to ‘data-savvy’ individuals.
Nevertheless, we acknowledge the need for future experiments
with other user groups to further broaden the scope of our findings.

Limitation and risk in adopting LLM. The limitations and in-
herent risks associated with LLMs (e.g., hallucination, inconsistent
accuracy) can impact automated fact-checking systems that rely
on them. This is particularly notable for tasks like information
search [79] and veracity prediction, especially when contextual
information is scarce [74]. Our approach, in contrast, does not rely
on LLM for direct determination of claims’ veracity. Instead, the
verification is through computing the pertinent data retrieved by
data fact specification.While inaccuracies may occur at other stages
of the pipeline, such as retrieving an incorrect subset of data or mis-
interpreting focused attributes, Aletheia offers features that assist
in identifying such errors and manually correcting them.



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yu Fu, Shunan Guo, Victor S.Bursztyn, Jane Hoffswell, Ryan Rossi, and John Stasko

9 FUTURE RESEARCH
Assessing and Communicating Plausibility of Data Claims
On Reasoning Level. Our first limitation highlights the need for
developing automated/semi-automated technology that assesses
and communicates the plausibility of data claims at both the factual
level and the reasoning level. To achieve this, similarly, a series of
NLP tasks are required to determine the linguistic relationship be-
tween data facts and corresponding conclusions, as well as retrieve
the data evidence. A reasoning error taxonomy, similar to the visual
error typology [61] recently proposed by Lisnic et al., is essential
for determining the text-data reasoning error and subsequent ev-
idence communication. Given the intricacy of reasoning errors
compared to factual ones, we anticipate that visualization — with
its capability to provide context and communicate uncertainty [40]
— will assume a larger role. Future HCI/Visualization research can
delve into and broaden the design space of data evidence presen-
tation, addressing not just factual errors but also reasoning flaws.
Further, evaluating data statements’ reasoning validity often in-
volves external contextual information, including facts/knowledge
or additional quantitative datasets. Kim et al. recently developed
an LLM-based interactive tool [51] to retrieve relevant data associ-
ated with data claims. Such tools can potentially be integrated with
Aletheia, enabling a more comprehensive evaluation of data claims.

Fact-checking More Complex Data Claim. There is substan-
tial room for further enhancing Aletheia’s capability to effectively
handle more complex data claims. A data claim can become more
complex when it 1) involves more complicated data operations (e.g.,
multiple filters), 2) encompasses nuanced semantics, and 3) is com-
pound. Our evaluation (Section 5.2) reveals that parsing data filters
is a primary cause of failures in text-to-data mapping. This poses
a substantial challenge for handling data facts involving different
filters, such as proportion type, where not only must all filters be
identified but also be categorized (i.e., focus or subspace) correctly.
We hypothesize that a constructive improvement might involve the
introduction of a specific step dedicated to subspace information
extraction. Nuanced semantics encompasses a broader range of lan-
guage descriptors. For example, while Aletheia currently supports
two basic types of trends (i.e., increase/decrease), the real-world
descriptors for trends can be more diverse and nuanced, consid-
ering various adjective/verb pairings (e.g., peak, tanking, spike,
etc.) [14]. Recent studies [14, 48, 50] on automatic labeling and de-
tecting such visual-text interplay and mismatch regarding temporal
data offer more linguistic flexibility and sophisticated computa-
tional approaches to quantify such semantic nuances. These studies
and approaches could be incorporated into Aletheia, potentially
enhancing its capability to verify a wider range of data claims. As
for compound claims, our unoptimized decomposition step can
effectively separate simple compound claims. However, when faced
with compound data claims coupled with information omission or
co-references, Aletheia struggles to decompose them into distinct
and accurate data facts, resulting in incomplete data claims or occa-
sional hallucinations. We encourage future research to explore and
optimize an end-to-end solution or curate ground-truth datasets
for potential task-specific fine-tuning and evaluation.

10 CONCLUSION
Under the backdrop of escalating challenges posed by misinforma-
tion, our research delves into data claims — textual descriptions
of facts/insight derived from structured, quantitative data sources.
Specifically, we concentrate on two critical problems of automated
fact-checking: (1) retrieving pertinent data evidence to verify data
claims and (2) designing effective presentations to communicate the
data evidence. We developed a prototype, Aletheia, to operational-
ize our proposed framework and tackle the multi-faceted challenge.
We utilize a pretrained LLM to address the NLP tasks that decom-
pose a data article and transform the data claims into data fact
specifications. We explored the design space of data evidence by
designing and implementing two representation formats, data table
and visualization, across 13 types of data facts. Additionally, we
equipped Aletheia with various interactions to enhance its utility
and demonstrate its practical potential. Through a performance
analysis with a manually curated dataset, we showcased LLM’s
robust capability both in classifying data facts and in translating
textual claims into data fact specifications. We subsequently con-
ducted a mixed-method user study with 20 participants, utilizing
our designs as probes to gather insights into assessment time, confi-
dence, and preference. Our findings revealed that our visualization
designs are advantageous for 7 out of 13 data fact types regarding
assessment time. Furthermore, based on participants’ feedback and
our reflection on the design process, we provided four general de-
sign recommendations for presenting data evidence. Ultimately, we
discuss the limitations of our study and suggest avenues for future
work to adapt and extend our work to accommodate more intricate
real-world scenarios and thereby benefit broader audiences.
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Figure 7: The design of our thirteen data evidence tables. sorting and filtering widgets are displayed underneath corresponding column
names. (T1) a sticky, highlighted row displaying mean value; (T2) a sticky, highlighted row displaying median value and highlighted row(s)
for median rows; (T3) a sticky, highlighted row displaying the sum (value); (T4) three sticky, highlighted summarization rows displaying
sum values of the focus set, the reference set, and the computed proportion; (T5) chronological table showing the mentioned timeframe;
(T6) extreme & (T7) rank - sorted, indexed table highlighting mentioned entity row; (T8) association - two mentioned measures with one
measure sorted; (T9) three-row table displaying the two compared entities and a highlighted row displaying the difference; (T10) sticky,
highlighted row displaying the counts of data points satisfying each category and their categorization overlap; (T11) two column table (bins
& range) showing the distribution; (T12) univariate outlier & (T13) multivariate outlier - sorted and indexed table displaying individual values
and highlighting mentioned entity row.
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Figure 8: The design of our 13 data evidence visualizations: (V1) a strip plot accompanied by a line that indicates their mean value; (V2) a
sorted bar chart with the median values highlighted and labeled; (V3) a stacked bar chart depicting the sum (value); (V4) a sunburst plot
showing the proportion of individual data points; (V5) a line graph showing the trend for a given timeframe; (V6) extreme and (V7) rank:
a sorted bar chart with the mentioned data point highlighted and labeled; (V8) a scatterplot that shows the association between values;
(V9) two bars with a comparison line showing the difference; (V10) a proportional Venn diagram showing the number of points based on the
categorization overlap; (V11) a histogram displaying the distribution; (V12) univariate outlier and (V13) multivariate outliers - a strip/scatter
plot with the mentioned data point highlighted.
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Figure 9: Our user study interface. It consists of five components: (A) Phase I page: the left side includes the questions and selections while
the right side displays the respective data evidence representations; (B) Phase II page: its initial state resembles study I page. After participants
click on Accurate/Inaccurate selection, both representations are displayed (left: initial form, right: alternative form). In the middle are the
additional questions and scale selections (i.e., confidence shift and preference); (C) Tutorial page: it allows participants to click through the
demo claims and get familiarized with the encodings for respective representation forms; (D) Result chart: it appears after Phase II and
demonstrates the results of participants’ average confidence shift and preference for each type of data fact; (E) Exploration page: supports
participants to click through all the test claims and review the corresponding representations during our interview portion.
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