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Figure 1: Overview of PaperToPlace: (a) The author creates an MR experience by taking a snapshot of a paper document, with
an optional ML-supported pipeline for associating key objects with each instruction step; (b) The consumer can browse the
spatialized instruction steps using a hand menu; (c) The step is placed at an optimal location to minimize context switching
and prevent occlusion of important interaction areas (e.g., not occluding the touchpad while setting the time on a microwave);
(d) The consumer can “pinch-and-drag” the step to refine the system placement. Steps (b - d) show the first-person MR view.

ABSTRACT
While paper instructions are a mainstream medium for sharing

knowledge, consuming such instructions and translating them into

activities can be inefficient due to the lack of connectivity with the

physical environment. We propose PaperToPlace, a novel work-

flow comprising an authoring pipeline, which allows the authors to

rapidly transform and spatialize existing paper instructions into an

MR experience, and a consumption pipeline, which computationally

places each instruction step at an optimal location that is easy to

read and does not occlude key interaction areas. Our evaluation

of the authoring pipeline with 12 participants demonstrates the

usability of our workflow and the effectiveness of using a machine

learning based approach to help extract the spatial locations associ-

ated with each step. A second within-subjects study with another 12

participants demonstrates themerits of our consumption pipeline to

reduce context-switching effort by delivering individual segmented

instruction steps and offering hands-free affordances.
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1 INTRODUCTION
Paper-based instructions are common for knowledge sharing. Such

instructions are often related to tasks that require users to interact

with multiple objects spatially distributed in an environment. For

example, when following a recipe, a user may need to interact with

multiple kitchen appliances like the cooktop, fridge, and microwave.

When following a safety manual, a compliance manager may need

to interact with various machines on the factory floor.

However, performing a task while consuming instructions can be

tedious as the text is typically disassociated from the user’s physical

environment. Thus, a user has to balance reading the instructions,

figuring out what they mean in the environment, and performing

the task, which can be cognitively demanding [37]. For example,
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when frying a piece of steak while following a cookbook, one needs

to frequently switch between the cookbook and the pan to check the

searing technique, temperature, etc. This switch can be costly if the

user places the cookbook somewhere peripheral so that it does not

obstruct the task area. The user might end up spending more time

trying to navigate the text and environment, than performing the

task. This problem is made worse if the user forgets some important

information like temperature or duration, and has to repeatedly

come back to the instruction to double check.

Consumer Augmented Reality (AR) and Mixed Reality (MR)
1

offer a unique opportunity to address this document-activity disas-

sociation by overlaying digital elements on top of the environment.

These approaches are becoming more accessible, and studies have

demonstrated their potentials for training workers to conduct tasks

that are spatial in nature [44]. While prior works investigated the

affordances of virtual guidance for conducting spatial tasks [48],

and how to integrate such guidance in MR [33], they have not

explored how document contents and their associated consump-

tion experience could be constructed in MR. To that end, Microsoft

Dynamic 365 Guides [12] is an industry solution to help enter-

prise users manually create instructions and anchor them in an MR

experience.

Across these MR instruction systems, the placement of the vir-

tual instructions is often decided by the authors, and cannot be

dynamically adapted to real-world contexts. This assumption could

lead to undesirable experiences in both the consumption phase

and the authoring phase. For the consumption phase, a static MR

instruction could be mistakenly placed at a location too far from the

user’s task, at a distance that is difficult to read, or at a position that

occludes key objects that the user is interacting with. For authoring,

the author has to spend time associating and placing an instruction

with its corresponding physical object. This process is time con-

suming and has to be repeated for every new set of instructions,

even though the physical layout of objects might not change much

over time. While some prior works, e.g., FLARE [41], showed the

usefulness of creating a persistent AR layout, real-world instruc-

tional activities are frequently changing (e.g., users might move

from one place to another depending on the procedural step in the

instructions), causing such a static layout to be infeasible.

We propose PaperToPlace, a novel end-to-end workflow that

transforms paper instructions into a context-aware instructional

MR experience by segmenting monolithic documents; associating
instruction steps with real-world anchoring objects; and optimally

placing the virtual instruction steps so that they are easy to read and
revisit while completing the tasks. To realize this goal, PaperToPlace

consists of an authoring and a consumption pipeline. With the

authoring pipeline, the author can simply take a snapshot of the

paper document by leveraging amobile camera (Fig. 1a). Our system

then segments the text in the document into individual instruction

steps. The author can manually edit these segments, and associate
each step with the spatial location where the relevant activities will

occur. To help with this association task, we designed a machine

learning (ML) approach, where a fine-tuned language model was

used to suggest the relevant spatial locations to the author. Our

1
While AR and MR are frequently interchangeable in literature, our contribution lies

under the MR paradigm that focus on interactivity and context awareness [66].

consumption pipeline is designed to render these instruction steps

and place them in the associated spatial locations. To ensure users

could easily consume the spatialized instruction, the placement of

each step in MR is optimized using a probabilistic optimization ap-

proach based on pre-created environmental models and the tracked

gaze and hands. Fig. 1c shows an example of a spatialized instruc-

tion step, where the step “And microwave on high for 30 seconds” is
tagged with “microwave” and is optimally rendered in front of the

user while not occluding their view as they set the heating time.

We prototyped PaperToPlace on Meta Quest Pro [11], and con-

ducted twowithin-subjects studies to evaluate the authoring pipeline

with 12 participants, and the consumption pipeline with another

12 participants. We demonstrated the usability of our authoring

pipeline, and the effectiveness of using an ML-based approach

to help the authors extract the spatial location associated with

each step. We then illustrated the effectiveness of the consump-

tion pipeline for reducing context-switching effort, delivering the

segmented instruction steps, and offering hands-free affordances.

With the assumption that the spatial profiles (i.e., the environ-
mental geometry and associated semantic labels, see Sec. 4.1) are

available, we contribute the design and evaluations of:

• An authoring pipeline that allows users to transform paper

instructions into a spatialized MR experience;

•A consumption pipeline that can computationally place the vir-

tual instruction steps in the optimal place without either occluding

the user’s view or leading to large degrees of context switching.

2 RELATEDWORK
This paper is motivated by prior work on incorporating instruction

experiences into MR and designing context-aware MR experiences.

2.1 Integrating Instruction Experiences into MR
MR has been widely used for augmenting document consumption

experiences [29, 30, 59]. Augmenting instructional documents, how-

ever, is still challenging due to the need to connect and integrate

with real-world scenes and activities [42, 64]. Many prior works

have explored the use of MR to augment a procedural instruction

experience — an important asynchronous collaboration task. For

example, ProcessAR [33] proposed in-situ procedural AR instruc-

tions that could be rapidly created by experts, and used to teach

novices through spatial and temporal demonstrations (e.g., infor-
mation about how to move a tool in the temporal domain and

orient it in the spatial domain). However, the placement of textual

instructions was not explored. CAPturAR [68] introduced a MR

tool that helps users rapidly author context-aware applications, by

referring to recorded activities. Commercial tools such as Microsoft

Dynamic 365 Guides [12] enables experts to author a MR instruc-

tion experience by enacting the guidance, placing the instruction

in the designated space, and recording the tool operations.

Although these works explored the design of MR-based instruc-

tion experiences, existing paper instructions are usually left behind,

resulting in unnecessary time and effort to redesign a usable instruc-

tion workflow. Additionally, existing MR instruction experiences

are often not able to dynamically adapt to the changing environ-

mental context of real-world activities (e.g., [12, 33]), causing user
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frustration when virtual graphics occlude interaction tasks. Paper-

ToPlace is novel in that it supports reusing existing paper docu-

ments that are designed by professional writers in a reader-centered

way [69], and can transform such documents into a spatialized and

context-aware MR experience that is adapted to both the user’s

needs and the environmental characteristics.

2.2 Designing Context-Aware MR Experiences
Context-aware MR systems aim to show “the ‘right’ information, at
the ‘right’ time, in the ‘right’ place, in the ‘right’ way” [40], which
requires understanding both human and environmental contexts.

Prior research explored various computational approaches to

realize this goal. For example, Lindlbauer et al. [53] used the real-

time cognitive load, estimated by pupil dilation, to decide when and

where the application should be shown, as well as how much infor-

mation should be delivered (i.e., level of detail) in an MR system.

Lang et al. [51] used simulated annealing to place virtual agents by

considering key anchoring surfaces in the environment identified by

pre-trained mask R-CNN. Liang et al. [52] used a similar approach

to build a scene-aware virtual pet which could behave naturally in

the real-world (e.g., respond to a food bowl). Yu et al. [71] proposed
an interactive and context-aware furniture recommendation MR

system by considering the real-world scene (i.e., spatial context)
and the learnt furniture compatibility in a latent space (i.e., cate-
gory context). ScalAR enabled designers to author a semantically

adaptive AR experience [60]. Liu et al. [54] attempt to generate

suggestions for the arrangement of work surfaces in HoloLens, by

capturing users’ habitual behaviors of interacting with objects on

the work surface. Similar to our work, SemanticAdapt [32] used an

optimization approach to automatically adapt MR layouts between

different environments by considering the virtual-physical seman-

tic connections. However, the target applications were only related

to information consumption (e.g., consuming news feeds) and did

not consider those related to real-world activities.

Inspired by this prior work, PaperToPlace demonstrates a novel

consumption pipeline that leverages a similar computational ap-

proach to analyze the tracked gaze and hand position, as well as

the anchoring surfaces of the key objects in a target environment.

3 PRELIMINARY NEEDS-FINDING STUDY
To understand the pain-points for consuming existing paper in-

structions (i.e., monolithic, non-segmented, non-spatialized, and
non-context-aware), we conducted a needs-finding study, rooted in

participant observations [23, 67] and semi-structured interviews.

3.1 Participants, Tasks, and Procedure
We recruited four participants (age,𝑀 = 24.75, 𝑆𝐷 = 2.87, two fe-

males, two males). Participants were required to complete the des-

ignated task using paper instructions. Specifically, PP1 and PP4

were required to make coffee with a coffee machine by following

the user manual [7] (Fig. 2a). PP2 and PP3 were required to make a

chocolate microwave cup cake from an existing recipe [14] (Fig. 2b).

These tasks were chosen since they are common activities in an

office kitchen; require participants to read the textual instructions;

and could be completed in a reasonable time for an unpaid study.

Document Document

Key Object=Coffee Machine

Key Object=Countertop

(a) (b)

Figure 2: Preliminary needs-finding tasks. (a) Making a cup
of coffee using a coffeemachine (PP1). (b) Making a chocolate
cake in a mug with a microwave (PP3).

We also used the existing instructions [7, 14] created by profes-

sional writers to minimize the impact of non-professional writing

styles. All participants reported little (PP3, PP4) to no (PP1, PP2)

prior knowledge for the designated task. Next, we conducted a

semi-structured interview, focusing on “what are the pain-points
while performing the designated tasks using the given paper instruc-
tion, and why?” Finally, we brainstormed potential designs of a MR

experience for consuming instruction documents. We explained

the concept of MR for PP3 and PP4 who were not familiar with it.

Participants were encouraged to sketch their imagined design on

an iPad Canvas. The study took on average 30min (𝑆𝐷 = 3.25min).

3.2 Findings
Overall, we identified three pain-points through the study.

The overwhelming amount of information or lack of nec-
essary details in the instructions can impact the usability.
During the semi-structured interviews, two participants (PP1, PP3)

pointed out that the sometimes overwhelming amount of informa-

tion and irrelevant content could be distracting. For example: “there
was a lot of information on the document. And it wasn’t easy for me to
know where and what information I should be looking at” (PP1) and
“the first setback was too much information” (PP3). To handle the po-
tentially overwhelming amount of information, PP2 first skimmed

the document in search of relevant content: “I am first attracted to
see where the bullet points are. [...] And then if I just skim through
the first two or three points, I understand that this is not relevant. So
I’m just skipping those sections completely.” While designing the MR

experience, PP1 incorporated such insights into her design (Fig. 3c)

and commented: “I would rather the MR just gives me one small step
every time. For example, I am making coffee and reaching the step
two, and in the virtual instruction, it will say like coffee making step
two, and then here will be just a instruction with just a few sentences.”

On the other hand, PP2 and PP4 believed the lack of details for

certain steps could impact their ability to perform the sub-task. For

example: “I’ve never cracked an egg so I don’t know how to do it. [...]
If it is some things that I’ve never actually done [and the instruction
document does not tell me how], I might actually be confused” (PP2). In
essence, different users likely require different levels of information

based on their prior experience with the intended task.

There are missing connections between the instruction step
and real-world activities. All participants identified a need for es-
tablishing spatial connections between instructions and real-world

objects or activities. For example, during the design phase of the

study, PP2 emphasized that “having [a virtual] arrow [in MR] that
can help me and connect me to the object is helpful.”
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(b1) Making a microwave cup cake 

Coffee 
Machine

Virtual 
Step

(c) © PP1

Key Objects

(a)

Document

Activity Document Starting of New Steps

(b2) Making a cup of coffee using a coffee machine

(b)“ok! we have flour, sugar, 
coco powder, egg would be 
somewhere there, vanilla 
extract [...]”

Figure 3: Preliminary needs-finding study results. (a) Exam-
ple context switching while PP2 was attempting to map in-
structions with real-world objects. (b) The annotated times-
tamps showing participants’ current focus as either the doc-
ument or real-world activities. (c) PP1’s design for an instruc-
tional MR experience while using a coffee machine.

On the other hand, most participants suggested that overwhelm-

ing spatial guidance might be unnecessary and could lead to visual

disturbance, similar to their concerns about the potentially over-

whelming amount of information already in some instructional

documents. Reflecting further on PP2’s suggestion to include vir-

tual arrows, he highlighted some potential downsides of this ap-

proach, noting that “[having useless spatial indicators] is going to be
overloaded. I know these basic things, and I don’t need pointers to see
like a spoon or a mug.” PP1’s design sketches implied an alternative

approach to establish connections between the instruction step and

real-world objects by placing the virtual step close to the coffee

machine, without occluding the user’s view (Fig. 3c).

Frequent context-switching between the instruction docu-
ment and real-world activities should be minimized. By ana-

lyzing the video recording, we found that users perform frequent

context-switching between documents and real-world activities.

For example, while PP2 was conducting the task, he naturally com-

mented: “ok! we have flour, sugar, coco powder, egg would be some-
where there, vanilla extract [...]”, thereby demonstrating frequent

context-switching between instructions and real-world objects as

he checked off items from the recipe list (Fig. 3a). Participants gen-

erally used two types of strategies to minimize context-switching:

holding and switching to the document while performing the task.

Specifically, we found that PP1 tended to hold the documents while

performing tasks, although occasionally this approached was incon-

venient for steps requiring two hands (Fig. 2a). In contrast, other

participants tended to place the document on the countertop while

reading the content, and move the document to a new place when

switching to other steps (Fig. 2b). To understand how participants

used the documents to perform individual steps, we manually la-

belled the timestamp of the recorded video while participants were

switching between documents and real-world activities, or oth-

erwise. Through this process, we observed that the participants

highly relied on the documents to perform tasks. Specifically, while

participants were attempting to complete a particular step, the doc-

ument was still frequently referenced even though the participants

had already read it at the beginning of each step (Fig. 3b).

3.3 Design Considerations
We identified three fundamental Design Considerations (DCs) by

analyzing the data from our preliminary needs-finding process.

[DC1] Only delivering the segmented instruction could en-
hancing information consumption experience. We show that

the participants expect to consume relevant information corre-

sponding to their current activities, yet existing paper documents

usually deliver all information to users at the same time. An im-

proved MR instruction consumption experience could create novel

and flexible ways to segment the document, such that only relevant

information is delivered to users for each associated step.

[DC2] Optimally placing instruction texts next to the areas
of interactive activities might be helpful for the intermittent
and repetitive information consumption experience.While

participants generally read the entirety of an instruction step before

performing the corresponding actions, the instruction step may

need to be consumed repeatably (Fig. 3b). Therefore, the placement

of the virtual instruction step in MR should consider the spatial

location where the relevant task would occur.

[DC3] The right level of spatial guidance could help users
associate instructions with spatialized key objects. While few

existing works (e.g., [48, 49]) suggested the usefulness of spatial

guidance for MR-based instructional experiences, our participants

emphasized the importance of moderate spatial guidance, with lim-

ited visual disruptions. Thus, usable spatial guidance, without caus-

ing overwhelming visual disturbance, should be provided at the

beginning of each instruction step.

4 PAPERTOPLACE SYSTEM OVERVIEW
Based on Sec. 3.2, we designed PaperToPlace (Fig. 4), comprising of

two pipelines: (1) an authoring pipeline for an author to rapidly
and easily create a spatialized MR instruction experience from exist-

ing paper-based instructions (Fig. 4a - g, Sec. 5), and (2) a consump-
tion pipeline for enabling a consumer to explore context-aware,

spatialized instruction steps in MR (Fig. 4i, Sec. 6). While we use

cooking tasks in an office kitchen as a running example for the

design and evaluations, our approach could be transferred to other

types of instruction documents.

4.1 Assumptions and SystemWalkthrough
We consider an environment to be a typical workspace (e.g., the
kitchen) for supporting a procedural task (e.g., baking a cake). Each
environment contains multiple physical key objects, which are de-

fined as the important, stationary objects that are usually attached

to the environment permanently (e.g., the fridge and microwave).

We did not consider non-stationary objects (e.g., a mug) due to the

lack of support for real-time arbitrary object tracking with Quest

Pro [11]. Each key object contains one or multiple anchoring sur-
faces, which are virtual surface(s) that describe the approximated

geometry of the objects. We use these surfaces to determine the

placement of instruction in MR.

We also define a spatial profile as a collection of the labels of

these key objects and their anchoring surface(s). We assume that

a spatial profile could be created offline, either through automatic

geometry processing (e.g., [6]) or manual means (Fig. 5). Example
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[
{

“step_id”: 1,
“text”: “<step_text_1>”,
“tag”: “<key_object_1>”

},
{

“step_id”: 2,
“text”: “<step_text_2>”,
“tag”: “<key_object_2>”

},
...

]

(g) Extract Document Profile

Merging: Merge the current step 
to the previous step;
Segmenting: Add an empty “next” 
step, to segment the current step;
Deleting: Delete the current step;

Text of the step;

Spatial profile contains the transforms 
of anchoring surfaces, along with the 
tags of associated key objects.

(h) Spatial Profile(i) Connecting Step with Key Object

Document Profile

(i1) Third-Person View

(i2) First-Person MR View

(a-d) Reuse and capture the paper instruction document 
(a) The Author (b) Locate Document (c) Crop Document (d) Confirm

Model Name Model Description Click to Select 
the Model

(f) Selection of 
Available Key Objects

(e) Model Selection

key object that the instruction step 
is associated with, where the color 
of the text field indicate the 
confidence of ML predictions;

Incorrectly predicted key 
objects could be manually 
fixed through the drop-down 
button as needed.

The mask indicates the 
located document.

The size of “X” button is approximately 
same as the index fingertip to make sure 
the key object is easy to be manipulated.

Instruction 
Document

Figure 4: PaperToPlace systemoverview.We assume a spatial profile (h, red block)was pre-created. The author uses the authoring
pipeline (a - g, blue blocks) to extract the document profile for the MR experience. With consuming pipeline (i, green block),
the instruction steps are displayed based on the environmental (loaded via the spatial profile) and user’s contexts.

environment where spatial profiles could be created in advance

include office kitchen, a rental house, and a factory. To realize this

assumption, we implemented a MR interface in the Quest Pro [11]

that allow each anchoring surface (represented by a 2D plane)

and the associated key object could be easily declared (Fig. 5a). The

spatial anchor APIs [16] were used to ensure the declared anchoring

surfaces are persistent in the environment (Fig. 5b).

With these assumptions, the goals of the two pipelines of Paper-

ToPlace are described as below:

• Authoring Pipeline. Given an existing paper-based instruction

document, the author would first segment the document content

into smaller steps, each of which will only be associated with one

key object. For each step, the author needs to identify themetadata,
including: (i) the text of each instruction step, and (ii) the key object
that the step should be anchored on. Together, such metadata makes

up our document profile — the essential elements to recreate a

spatialized MR experience from existing paper documents.

(a) (b)

Indicating one 
anchored surface.

Figure 5: (a) Creation of an anchoring surface, visualized as
a semi-transparent mask, using touch controllers. (b) Exam-
ples of anchoring surfaces in our experimental kitchen. Both
scenes were captured as first-person MR views.

• Consumption Pipeline.While consuming the document in MR,

the instruction steps float in mid-air and will be optimally attached

to one of the anchoring surfaces of the associated key object, based

on user context—real-time user interactions data in MR such as

the tracked eye gaze and hand joints. For example, the step “boil a
cup of water in the microwave for 5 min” should be attached to one

of the anchoring surfaces of the “microwave” key object and not

impact the user’s interactions.

4.2 Application Scenarios
We consider two user roles, where the author use the authoring
pipeline to rapidly create an instruction MR experience and the

consumer use the consumption pipeline to consume the authored

MR experience while completing tasks. We target on colocated

and asynchronous collaborations [47], where the instructions are

authored and consumed in same environment. Specific application

scenarios are described below.

Author and Consumer are Different Users. For a specific proce-
dural task, PaperToPlace could be used to facilitate asynchronous

collaborations between experts and novices. For example, company

administrators could use PaperToPlace for training new employees

to use the provided facilities (e.g., coffee machines and fridges in the

shared office kitchen). Chidambaram et al. [33] also demonstrated

the usefulness of using a similar instruction MR experience to teach

novices assembly mechanics.

Author andConsumer are the SameUser.Whilewe differentiate

two user roles, it is possible that the author and consumer are the

same user. As the cognitive processes for consuming instructions

usually occur in working memory, which is constrained by both
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time and processing capacity, it is often necessary for one to revisit

the procedures repeatably for the same task [21, 42]. For example,

while cooking the same meal, it is common for the user to refer

back to the cookbook each time upon starting a new step. Fig. 3b

confirmed such patterns, where participants repeatedly refer to the

instructions while completing a specific step. In this scenario, the

user could author a personalized and spatialized MR experience,

which s/he could use repeatably when preparing the same meal in

the future; for example, a user could customize a recipe to take into

account his/her preferences for spice level.

5 AUTHORING PIPELINE
The authoring pipeline extracts the document profile from an exist-

ing paper document to create an MR experience rapidly and easily.

5.1 Document Capture and Parsing
One question for document reuse is how to enable users to rapidly
capture and extract the document profile from an existing instruc-
tion document? Inspired by mobile applications that allow users to

capture and analyze scanned documents (e.g., Adobe Scan [3] and

Tab [17]), we similarly enable authors to simply take a snapshot of

the instruction document to generate a document profile (Fig. 4a -

d).

The author can then adjust the scanned region to crop out un-

necessary components (e.g., titles, etc.) as needed (Fig. 4c). Paper-

ToPlace then leverages OCR services by Google Vision API [13]

to parse the scanned image into machine readable text, due to its

ability to extract paragraph structure in the parsed text using full

text annotations [9]. By default, we segment each paragraph as one

step in the instructions. However, the author can re-segment the

steps and fix errors in a dedicated mobile interface (Fig. 4g).

5.2 Selecting the Model and Key Objects
To extract the document profile, we designed a manual and ML-

assisted approach to help authors rapidly and easily associate key

objects with each step. Our ML-assisted approach leverages a pre-

trained language model for a specific environment to predict the

key object that is associated with each step. After transforming the

existing paper document into machine readable text, the authors

need to select the model for the target environment (Fig. 4e). For

environments without a pre-trained model, the manual approach

enables authors to manually extract the metadata of each step.

The author then selects the key objects that exist in the target

workspace (i.e., the set of available key objects) (Fig. 4f). First, this

step ensures the key objects contained in the extracted document

profile aligns with the spatial profile of the intended environment.

For example, a cooking instruction step such as “boil a cup of water”
could be executed either in a typical household kitchen on a cooktop,
or in an office kitchen that only provides a microwave. Second,
setting the available key objects also provides prior knowledge to

help increase the accuracy while predicting key object associations.

For example, if an office kitchen only has a microwave, the key

object for “boil a cup of water” should not be predicted as oven, even
though oven is a possible label for the pre-trained model (Sec. 5.3).

(a) (b)

Figure 6: Confusion matrices of the fine-tuned BERT model,
with the ground truth generated by rule-based method (a)
and manually labeling (b).

5.3 Creating Document Profile
Creating a document profile requires two types of metadata:

(1) The text of each procedural step.While by default we con-

sider and segment each sentence as one instruction step (Sec. 5.1),

the author could overwrite the system segmented results by seg-
menting, merging and deleting specific step(s) (Fig. 4h). When a

specific step is modified or a new merged step is generated, the

associated key objects will be re-predicted (if the ML supported

mode is used). Although some instruction steps might be associated

with multiple or no key objects, such flexibility allows the author to

split or merge the target step(s). In response to [DC1], additional
flexibility is also provided for the author to modify the generated

text of each step to ensure that the right information with right

level of details could be delivered to the consumers.

(2) The key object that the step is associated with. The authors
can use either a manual or ML-assisted approach to determine the

key object associated with each step. Fig. 4g shows a dedicated

interface with segmented instructions, where the authors can use

the drop downs to select the associated key objects, with the color

scale indicating the confidence of our ML predictions (if applicable).

While manually assigning each step to a key object could work

robustly, predicting key objects using a ML-assisted approach that

requires a pre-trained model is challenging, due to the needs for a

dataset and ground truth labels. Creating such a dataset that could

be generalized to all procedural instructions is not realistic, and
labeling each step with a ground truth key object is also difficult

and time consuming. Instead of preparing such dataset for all in-
struction documents, we chose to focus on domain-specific dataset

that is publicly available. Alternatively, the dataset could be created

via vendors or crowdsourcing.

We describe ourmethods for generating such a pre-trainedmodel

below. Although our running example is based on cooking instruc-

tions, the overall approach could be transferred to other type of

instructions documents, provided the unlabeled dataset is available.

Dataset:We used RecipeNLG [22] for training purposes, which con-

tains more than 2.2M cooking recipes where each recipe includes

multiple ordered instruction steps. The process of aggregating all

steps from all recipes yielded an unlabelled dataset with 19.5M

steps, with an average of 11.54 (𝑆𝐷 = 7.13) words per step.

Rule-Based Labelling of Training Instruction Steps: Instead
of manually labelling each step, we used a rule-based approach

to label steps that contain the exact words of the predefined key
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objects. For example, we label the step “boiling a cup of water in the
microwave for 5 min” as “microwave”, yet the step “boiling a cup of
water for 5 min” will not be labeled, and thus will not be included

as part of our training dataset. We iteratively selected nine key

objects that exist in a typical kitchen: blender, cabinet, coffee maker,
countertop, fridge,microwave, oven, sink, toaster. Such selections also
ensures a reasonable amount of instruction steps for subsequent

model fine-tuning purposes. We generated a dataset where each

of the nine labels is associated with 218 instruction steps (i.e., the
labeled dataset contains 218 × 9 = 1962 instruction steps).

Training: Due to the limited dataset size, we fine-tuned the model

using the output classification layer of a 12-layer BERT model for

uncased vocabulary, which has been used for generating contextual

language embeddings [36]. We used Adam optimizer with the learn-

ing rate, 𝜖 , and batch size set to 2× 10−5, 10−8, and 32, respectively,
recommended by Devlin et al. [36]. 80%, 10% and 10% of the dataset

are used for training, validation and testing, with the amount of

steps for each key object balanced across the sets.

Model Performance: We demonstrated an overall 83.57% testing

accuracy by considering the label generated by our rule-based ap-

proach as the ground truth (Fig. 6a). Additionally, we manually label

the associated key objects on the testing dataset to limit the impact

from any errors generated by our rule-based approach, which lead

to a 82.13% overall accuracy (Fig. 6b).

Model Execution: The pre-trained model is used for predict-

ing key objects from the segmented text of each step. To enhance

the accuracy of the predicted key objects, we use prior knowledge

provided while specifying the available key objects (Sec. 5.2). Specif-

ically, the final assigned key object is the ML predicted key object

with the highest confidence score that also belongs to the set of

available key objects of the target environment.

6 CONSUMPTION PIPELINE
The consumption pipeline aims to spatialize each steps by anchor-

ing them at the optimal position next to the key object. For example,

consider how the instruction “microwave on high for 30 seconds”
should be attached to a microwave. An ideal location would be at

the front surface of the microwave door. A less idea location would

be at the front of the input panel because the instruction might get

in the way when the user tries to set the timer (see examples in

Fig. 1c, Fig. 4i, and Fig. 20 in Appendix B.2).

6.1 Interaction Design
Our consumption pipeline provides dedicated interactionmetaphors

based on the preliminary findings (Sec. 3.2).

Navigating Between Individual Steps. Consumers can use hand

menus to easily and rapidly switch between steps (Fig. 1b). We

adopted the suggestions from [DC1] and the conceptual design

of Fig. 3c that advocate the idea of delivering the right level of

information only at the right time. Therefore, PaperToPlace only

renders the current instruction step along with a task completion

progress bar. When a new step is triggered, PaperToPlace first

anchors the virtual label in front of the consumer, since a initial

instruction step consuming is usually required before consumers

proceeding on execute the associated steps (Fig. 3b).

Notations Descriptions

𝑊 , 𝐻
Number of discretized cells along the width and

height of the anchoring surface.

𝑟𝑜𝑡𝑠 Rotation, represented by quaternion, of the surface 𝑠 .

𝑑𝑢𝑠 , 𝑑𝑟𝑠 , 𝑑𝑓𝑠 The up, right, and forward direction of the surface 𝑠 .

𝑝𝑒𝑦𝑒 The midpoint of left and right eye in world coordinate.

𝑑𝑓𝑒𝑦𝑒
The forward direction of the gaze, averaged by left

and right eye gaze.

𝑎 = (𝑟, 𝑐, 𝑠 )
Representation of an instruction step placement with

respect to anchoring surface 𝑠 , with index of 𝑟 and 𝑐

along width and height, where 𝑟 ∈ [0,𝑊 ) , 𝑐 ∈ [0, 𝐻 ) .
𝑝𝑎 The position of the instruction step in world coordinate.

𝜃𝑥,𝑦 The angle between vector 𝑥 and 𝑦.

Table 1: Notations of the key parameters and functions.

Animating Spatial Guidance. To address [DC3], we decided not

using the persistent visual guidance (e.g., virtual arrows) [48, 49]
that might cause unnecessary visual disturbance. Instead, we use

a animated flying effect where the virtual step could “fly” toward

the key object after initial instruction step consuming. Such design

leverage the fact that a motion effect could direct the consumers’ at-

tention, and could implicitly and rapidly offer visual guidance of the

spatialized key object without causing overwhelming disturbance

while consumers are executing the steps [45].

Placement of Instruction Steps. PaperToPlace places and an-

chors the instruction step on one of the anchoring surfaces of the

key objects while not occluding the important region. This design

emphasizes [DC2] suggesting the connections between instruc-

tion and real-world contexts, and could bring convenience while

the consumers are attempting to refer back to the instruction step

repeatedly while completing the step (Fig. 3c). If the consumer dis-

likes the label position, they can request a new position update

on-demand using a mid-air pinch gesture. We also allow the con-

sumers to use pinch-and-drag gestures to manually move the step

to their preferred place (Fig. 1d). Such feedback action will in turn

help on future decisions while placing instruction steps.

6.2 Problem Formulation
We formulated the process of optimally placing the instruction step

as an optimization problem, where we used the tracked hands and

gaze, as well as the anchoring surfaces defined by the spatial profile

to search the optimal placement for each step. Table 1 summarizes

the notations of key parameters.

Representations of an Instruction Step Placement. We first

discretized each anchoring surface into𝑊 ×𝐻 virtual cells where

each cell has a dimension of 3𝑐𝑚 × 3𝑐𝑚. We assumed that the

center of each virtual step should be aligned with the center of the

cell on the anchoring surface. We used 𝑎 = (𝑟, 𝑐, 𝑠) to indicate the
placement of a step, where 𝑟 and 𝑐 indicate the index of cell along

the width and height of the surface 𝑠 . The world position of the

attempted step placement is 𝑝𝑎 = 𝑝𝑡𝑜𝑝𝐿𝑒 𝑓 𝑡 +0.03·𝑑𝑟𝑠 ·𝑟−0.03·𝑑𝑢𝑠 ·𝑐 ,
where 𝑝𝑡𝑜𝑝𝐿𝑒𝑓 𝑡 is the position of the top left vertex of surface 𝑠 .

Representations of the Step Label Rotation. Reading angles

is a critical factor for consuming document [55]. It is therefore

important to determine the rotation of the step, such that the text
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Algorithm 1 Computing the rotation of instruction step.

1: function GetRotation(𝑟𝑜𝑡𝑠 , 𝑝𝑎 , 𝑝𝑒𝑦𝑒 )

2: 𝑑𝑖𝑟 ← 𝑝𝑎 − 𝑝𝑒𝑦𝑒 {Approximate potential looking direction.}

3: 𝛼𝑢𝑝 ← 𝐴𝑛𝑔𝑙𝑒 (𝑑𝑢𝑠 , 𝑑𝑖𝑟 )
4: 𝛼𝑟𝑖𝑔ℎ𝑡 ← 𝐴𝑛𝑔𝑙𝑒 (𝑑𝑟𝑠 , 𝑑𝑖𝑟 )
5: if 𝑠 is a horizontal anchoring surface then
6: return 𝑟𝑜𝑡𝑠 ∗𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛.𝐸𝑢𝑙𝑒𝑟 (90◦ − 𝛼𝑢𝑝 , 0, 90◦ − 𝛼𝑟𝑖𝑔ℎ𝑡 )
7: else {𝑠 is a vertical anchoring surface.}
8: return 𝑟𝑜𝑡𝑠 ∗𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛.𝐸𝑢𝑙𝑒𝑟 (90◦ − 𝛼𝑢𝑝 , 𝛼𝑟𝑖𝑔ℎ𝑡 − 90

◦, 0)
9: end if
10: end function

(a) (b)

Example Horizontal Anchoring Surface Example Vertical Anchoring Surface

Countertop

Microwave

Figure 7: First-person view of rotating instruction step for
(a) horizontal anchoring surface (e.g., countertop) and (b)
vertical anchoring surface (e.g.,microwave).

is always perpendicular to user’s looking direction (i.e., the virtual
texts should be delivered facing toward user’s eye). To address this,

we rotated the anchoring surfaces by using the potential looking

direction (𝑝𝑎 − 𝑝𝑒𝑦𝑒 ). Algo. 1 shows how we compute the rotation

of the step for horizontally (e.g., countertop) and vertically placed

anchoring surfaces (e.g., the front surface of fridge). Fig. 7 demon-

strates two examples where the steps are appropriately rotated.

Importance Map. One goal while attempting to place an instruc-

tion step onto associated anchoring surface(s) is to find the optimal

placement that will not occlude consumer’s interactions with the

key object. While Lang et al. [51] presumed that the centroid of a

key object is the most important area and should not be occluded

by virtual MR agents, such assumption is invalid in our problem as

the real-world interactions are highly dynamic. For example, while

interacting with microwave, the critical areas might be the region

on top of keypad when inputting cooking time, or the center areas

when the user is checking whether the food is cooked. We used

importance map (𝑖𝑚𝑎𝑝) to represent the importance of each pos-

sible cell on anchoring surface, where a larger 𝑖𝑚𝑎𝑝 value implies a

higher probability that the corresponding position being interacted,

and therefore should not be occluded by the virtual step. The values

of 𝑖𝑚𝑎𝑝 are determined using near real-time data provided by the

MR headset. By leveraging the pre-created spatial profile, we used

the tracked gaze and hands to infer the importance of each possible

position on anchoring surface(s). Intuitively, the areas near the

hands, which usually imply the regions that are interacted by the

consumers, might be more important and should not be occluded

by the steps. Sec. 6.3 describes the computations of 𝑖𝑚𝑎𝑝 .

6.3 Importance Map on Anchoring Surfaces
Approximate the Importance of Each Frame. The contextual
data from each frame refers to the tracked gaze and hand joints, at a
specific time instant. Inferring 𝑖𝑚𝑎𝑝 from contextual data on single

frame is less reliable, as real-world activities are highly dynamic.

Algorithm 2 Approximating the importance of individual frame.

1: function GetFrameWeights(𝑣𝑙𝑒 𝑓 𝑡 [ ], 𝑣𝑟𝑖𝑔ℎ𝑡 [ ], 𝑡 [ ])
2: 𝑁 ← 𝐿𝑒𝑛𝑔𝑡ℎ (𝑡 ) {𝑁 indicates the frame size.}

3: 𝑤, 𝑤𝑠𝑝𝑒𝑒𝑑 , 𝑤𝑡𝑖𝑚𝑒 ← [0] ∗ 𝑁, [0] ∗ 𝑁, [0] ∗ 𝑁
4: for 𝑖 ← 1 to 𝑁 do
5: 𝑤𝑠𝑝𝑒𝑒𝑑 [𝑖 ] ← ( |𝑣𝑙𝑒 𝑓 𝑡 [𝑖 ] | + |𝑣𝑟𝑖𝑔ℎ𝑡 [𝑖 ] | )/2
6: 𝑤𝑡𝑖𝑚𝑒 [𝑖 ] ← (𝑡 [𝑖 ] − 𝑡 [1] )/(𝑡 [𝑁 ] − 𝑡 [1] )
7: end for
8: 𝑤𝑠𝑝𝑒𝑒𝑑 ← 𝑀𝑖𝑛𝑀𝑎𝑥𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑤𝑠𝑝𝑒𝑒𝑑 ) {Normalize to 0 to 1.}

9: 𝑤𝑡𝑖𝑚𝑒 ← 𝑀𝑖𝑛𝑀𝑎𝑥𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑤𝑡𝑖𝑚𝑒 ) {Normalize to 0 to 1.}

10: 𝑤 ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ( (1 − 𝑤𝑠𝑝𝑒𝑒𝑑 )𝑤𝑡𝑖𝑚𝑒 ) {Σ𝑁
1
(𝑤 [𝑖 ] ) should be 1.}

11: return 𝑤

12: end function

Yet, contextual data collected from a set of frames are practically

not equally important. Therefore, while aggregating contextual

data across a set of frames, it is important to consider the relative

importance of individual frames. PaperToPlace uses the tracked

eye behaviors to approximate the relative importance of contextual

data of each frame. The first intuition is based on the instantaneous

angular speed of gaze, where a slower angular speed of gaze implies

a higher importance. For example, while attempting to input time

when using microwave, the consumer might be fixing at the keypad,
during which the contextual data could offer meaningful clues

for approximating 𝑖𝑚𝑎𝑝 . Whereas, the consumer might rapidly

saccade around the environment while finding ingredients, during

which the contextual data might be less meaningful. While [56, 57]

attempted to design closed-form solution for classifying saccade

and fixation using the speed of gaze, such eye behaviours usually

varies across users and tasks. Our second intuition is based on the

observation that the contextual data from amore recent framemight

be more useful to indicate the interactions in the subsequent task

episode. Algo. 2 shows the computation of the frame weight (𝑤 )

that is used to quantify the relative importance of contextual data at

each frame. Experimentally, we set 𝑁 = 90, which is approximately

1 second of past contextual data. We approximated 𝑤 based on

instantaneous angular speed of left and right gaze (𝑣𝑙𝑒 𝑓 𝑡 , 𝑣𝑟𝑖𝑔ℎ𝑡 ),

and the timestamps (𝑡 ) of each frames. Remarkably, a slower eye

moves (i.e., smaller 𝑣𝑙𝑒 𝑓 𝑡 and 𝑣𝑟𝑖𝑔ℎ𝑡 ) and a more recent timestamp

(i.e., larger 𝑡 ) would lead to a more important frame weight. The

𝑀𝑖𝑛𝑀𝑎𝑥𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (·) and 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (·) represent the min-max
normalization (to [0, 1]), and the normalization process such that

the summation of the list is 1.

Approximate the Importance Map from Tracked Hands. To
compute the overall 𝑖𝑚𝑎𝑝 from a set of frames, we first approxi-

mated the 𝑖𝑚𝑎𝑝 from the contextual data collected at each frame.

This could be realized by𝐺𝑒𝑡𝑀𝑎𝑝 (·) (Algo. 3), which 𝐹𝑙𝑜𝑜𝑑𝐹𝑖𝑙𝑙 the

𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙 of the projected points of 15 tracked hand joints [10]

on the associated anchoring surfaces. Fig. 8d shows an example

of the 𝑖𝑚𝑎𝑝 from single frame, approximated by tracked hands in

Fig. 8b.

Generate the Overall Importance Map. While we assumed that

the areas that are not occluded by hands might be less important,

the importance assigned to each cell on the anchoring surfaces

might not be equally same. For example, while inputting time using

keyboard of microwave, the further the step being placed from the
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Figure 8: Examples of importance map. (a) Third-person view; (b) First-person view through MR; (c) First-person view of the
key object (sink) containing four anchoring surfaces; (c) Importance map from single frame; (d) Overall importance map from
a set of frames. The red and blue points in (d) and (e) indicate the projected key joints of the tracked left and right hand on the
anchoring surfaces, respectively.

Algorithm 3 Algorithms for computing importance map.

1: function GetMap(𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝐽 𝑜𝑖𝑛𝑡𝑠 [ ],𝑊 , 𝐻 )

2: ℎ𝑖𝑡𝑠,𝑚𝑎𝑠𝑘 ← [], 𝑧𝑒𝑟𝑜𝑠 (𝑊,𝐻 )
3: for 𝑝 𝑗𝑜𝑖𝑛𝑡 in 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝐽 𝑜𝑖𝑛𝑡𝑠 do
4: ℎ𝑖𝑡 ← 𝑅𝑎𝑦𝐶𝑎𝑠𝑡 (𝑠𝑡𝑎𝑟𝑡 : 𝑝𝑒𝑦𝑒 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 : 𝑝 𝑗𝑜𝑖𝑛𝑡 − 𝑝𝑒𝑦𝑒 )
5: if ℎ𝑖𝑡 ≠ 𝑛𝑢𝑙𝑙 then
6: 𝑤 ← 𝑇𝑜𝑊𝑖𝑑𝑡ℎ𝐼𝑛𝑑𝑒𝑥 (ℎ𝑖𝑡 .𝑥 )
7: ℎ ← 𝑇𝑜𝐻𝑒𝑖𝑔ℎ𝑡𝐼𝑛𝑑𝑒𝑥 (ℎ𝑖𝑡 .𝑦)
8: 𝑚𝑎𝑠𝑘 [𝑤,𝑐 ] ← 1

9: ℎ𝑖𝑡𝑠.𝑎𝑑𝑑 ( [𝑤,𝑐 ] )
10: end if
11: end for
12: 𝑝ℎ𝑢𝑙𝑙 ← 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙 (ℎ𝑖𝑡𝑠 )
13: 𝑚𝑎𝑠𝑘 ← 𝐹𝑙𝑜𝑜𝑑𝐹𝑖𝑙𝑙 (𝑚𝑎𝑠𝑘, 𝑝ℎ𝑢𝑙𝑙 )
14: return𝑚𝑎𝑠𝑘

15: end function
16:

17: function GetOverallMap(𝑓 𝑟𝑎𝑚𝑒𝑠 ,𝑊 , 𝐻 )

18: 𝑚𝑎𝑝 ← 𝑧𝑒𝑟𝑜𝑠 (𝑊,𝐻 )
19: for 𝑖 ← 1 to 𝑁 do
20: 𝑖𝑚𝑎𝑝𝑙𝑒 𝑓 𝑡 ← 𝐺𝑒𝑡𝑀𝑎𝑝 (𝑓 𝑟𝑎𝑚𝑒𝑠 [𝑖 ] .𝑙𝑒 𝑓 𝑡 . 𝑗𝑜𝑖𝑛𝑡𝑠,𝑊 ,𝐻 )
21: 𝑖𝑚𝑎𝑝𝑟𝑖𝑔ℎ𝑡 ← 𝐺𝑒𝑡𝑀𝑎𝑝 (𝑓 𝑟𝑎𝑚𝑒𝑠 [𝑖 ] .𝑟𝑖𝑔ℎ𝑡 . 𝑗𝑜𝑖𝑛𝑡𝑠,𝑊 ,𝐻 )
22: 𝑚𝑎𝑝 ←𝑚𝑎𝑝 + 𝑤 [𝑖 ] ∗ (𝑆𝑜𝑓 𝑡 (𝑖𝑚𝑎𝑝𝑙𝑒 𝑓 𝑡 ) + 𝑆𝑜𝑓 𝑡 (𝑖𝑚𝑎𝑝𝑟𝑖𝑔ℎ𝑡 ) )
23: end for
24: return𝑀𝑖𝑛𝑀𝑎𝑥𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑚𝑎𝑝 ) {Normalize to 0 to 1.}

25: end function

areas occluded by hands could lead to lower probability that the

important areas being occluded by hands. Therefore, 𝑖𝑚𝑎𝑝 should be

expected to model how important of a specific pixel on the anchoring
surface, instead of whether the particular pixel is important. Inspired
by Lang et al. [51], we used 𝑆𝑜 𝑓 𝑡 (·) to approximate the importance

at each possible placement on the anchoring surface(s) generated

by left and right hand respectively (Algo. 3). Eqn. 1 describes this

process, where 𝑒
𝑟,𝑐
𝑚𝑖𝑛

indicates the 𝐿2-distance from placement (𝑟, 𝑐)
to the closest placement(s) where the computed importance of

individual frame from 𝐺𝑒𝑡𝑀𝑎𝑝 (·) (Algo. 3) is 1.

𝑖𝑚𝑎𝑝 (𝑟, 𝑐) = 1 −
𝑒
𝑟,𝑐
𝑚𝑖𝑛

𝑚𝑎𝑥𝑟 ′,𝑐′𝑒
𝑟 ′,𝑐′
𝑚𝑖𝑛

(1)

The overall 𝑖𝑚𝑎𝑝 is finally computed by aggregating the 𝑖𝑚𝑎𝑝

generated by left (𝑖𝑚𝑎𝑝𝑙𝑒 𝑓 𝑡 ) and right (𝑖𝑚𝑎𝑝𝑟𝑖𝑔ℎ𝑡 ) hands on each

frame using previous computed weight (𝑤 ) in Algo. 2. This process

could be demonstrated in 𝐺𝑒𝑡𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑀𝑎𝑝 (·) (Algo. 3). Notably, if

(a) (b)

First-Person MR View Inside Simulator

𝐼 = 1, if the pixel 
is occluded by 
the placed step.

𝐼 = 0, if the pixel is not
occluded by the placed 
step.

Figure 9: Example of occlusion map. (a) An example place-
ment of the instruction step anchored next to the sink; (b) Vi-
sualization of the generated occlusion map, see Fig. 8c for
the corresponding real-world scene.

there is no area being occluded by hands, we set 𝑖𝑚𝑎𝑝 = 𝑶𝑊,𝐻 .

Fig. 8e shows an example overall 𝑖𝑚𝑎𝑝 .

6.4 Constraints and Costs
To solve the optimization problem for placing the instruction step

on the anchoring surface(s), we need to model the constraints such

that the placed step will minimally occlude the user’s view and will
not be too far from the user’s focused attention.

Total Cost. We designed the overall cost (𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎), Eqn. 2) as a
weighted sum of the visibility cost (𝐶𝑉 (𝑎)), the readability cost

(𝐶𝑅 (𝑎)), hand angle cost (𝐶𝐻𝐴 (𝑎)), and preference cost (𝐶𝑃 (𝑎)). 𝜆𝑉 ,
𝜆𝑅 , 𝜆𝐻𝐴 , and 𝜆𝑃 are the weights associated with each of designed

cost. Experimentally, we set them to 0.24, 0.24, 0.24 and 0.28, with

slight emphasis on consumers’ preference. We provide rationales

of the design of each costs.

𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎) = 𝜆𝑉𝐶𝑉 (𝑎) + 𝜆𝑅𝐶𝑅 (𝑎) + 𝜆𝐻𝐴𝐶𝐻𝐴 (𝑎) + 𝜆𝑃𝐶𝑃 (𝑎) (2)

(i) Visibility Cost. 𝐶𝑉 aims to to measure how much key areas

of the anchoring surfaces are occluded by a step placement 𝑎, and

to penalize the situation while the step occluding the important

areas. Eqn. 3 defines 𝐶𝑉 , where 𝐼 indicates occlusion map and

𝑖𝑚𝑎𝑝 indicates the relative importance of each discretized cells on

the anchoring surfaces computed by Algo. 3.

𝐶𝑉 (𝑎) =
[∑𝑟,𝑐 𝐼 (𝑟, 𝑐) · 𝑖𝑚𝑎𝑝 (𝑟, 𝑐)]2

| |𝑖𝑚𝑎𝑝 (𝑟, 𝑐) | |2 ·
∑
𝑟 ′,𝑐′ 𝐼 (𝑟 ′, 𝑐′)

(3)

Notably, the 𝐼 (𝑟, 𝑐) is assigned as 1 when the pixel (𝑟, 𝑐) is oc-
cluded by the step from the center of both eye (Fig. 9). Fig. 9b shows
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an example occlusion map when the instruction step is placed next

to the wall behind the sink. We finally normalized 𝐶𝑉 (𝑎) to be

independent of dimensions of anchoring surface(s).

(ii) Readability Cost. We penalized the solution when the de-

livered step is too far from the user’s attention. To model this

constraints, we used the eye tracking results and measure the 𝐿2-

distance from the placed step to the weighted average of looking

direction of both eye (𝑑 𝑓𝑒𝑦𝑒 ). Eqn. 4 defines𝐶𝑅 (𝑎), where 𝑑𝑚𝑎𝑥 rep-

resents the maximum 𝐿2-distance between two arbitrary solutions

on the anchoring surfaces, which is computed by the maximum dis-

tance of the convex hull consisting of all vertices of the anchoring

surfaces. Additionally, 𝐶𝑅 (𝑎) need to enforce the instruction step

is placed within binocular vision (i.e., approximately ±60◦) [58], to
minimize the needs of moving head in order to read the instructions.

We used a coefficient 𝑘 to penalize the cost function, where 𝑘 is set

to 1 if 𝜃𝑝𝑎−𝑝𝑒𝑦𝑒 ,𝑑 𝑓𝑒𝑦𝑒 < 60
◦
, otherwise we set 𝑘 = 𝜃𝑝𝑎−𝑝𝑒𝑦𝑒 ,𝑑 𝑓𝑒𝑦𝑒 .

𝐶𝑅 (𝑎) =
𝑘 · | | (𝑝𝑎 − 𝑝𝑒𝑦𝑒 ) · 𝑑 𝑓 𝑒𝑦𝑒 · 𝑑 𝑓 𝑒𝑦𝑒 − (𝑝𝑎 − 𝑝𝑒𝑦𝑒 ) | |2

𝑑𝑚𝑎𝑥
(4)

(iii) Hand Angle Cost.We modeled the observation that the in-

struction documents are usually held by and placed in front of the

consumers’ hands (Fig. 2). We first computed the angle between for-

ward direction of the hand and the direction vector pointing from

hand to the attempted solution (𝜃𝑑𝑓ℎ𝑎𝑛𝑑 ,𝑝𝑎−𝑝ℎ𝑎𝑛𝑑 ), for left and right
hand respectively (noted as 𝜃𝑙𝑒 𝑓 𝑡𝐻𝑎𝑛𝑑 (𝑖), 𝜃𝑟𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 (𝑖) computed

from frame 𝑖). We then formulated the overall hand angle cost, by

aggregating the angle cost generated by each frame (Eqn. 5).

𝐶𝐻𝐴 (𝑎) =
∑︁
𝑖

𝑤 [𝑖] · [𝜃𝑙𝑒 𝑓 𝑡𝐻𝑎𝑛𝑑 (𝑖) + 𝜃𝑟𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 (𝑖)]
360
◦ (5)

(iv) Preference Cost. While PaperToPlace could determine the

optimal step placement based on near-real-time context data, we re-

tained the flexibility for users to specify their preferred placements.

Eqn. 6 defines 𝐶𝑃 (𝑎), where 𝑝𝑝𝑟𝑒 𝑓 ,𝑆𝑖 refer to the preferred step

placement in the world coordinates for step 𝑆𝑖 . We used 𝑝𝑝𝑟𝑒 𝑓 ,𝑆𝑖 =

𝑛𝑢𝑙𝑙 to indicate that the user has not manually fix the step place-

ment. Similar to 𝐶𝑅 , we used 𝑑𝑚𝑎𝑥 to normalize preference cost.

𝐶𝑃 (𝑎) =
{ | |𝑝𝑎−𝑝𝑝𝑟𝑒𝑓 ,𝑆𝑖 | |2

𝑑𝑚𝑎𝑥
𝑝𝑝𝑟𝑒 𝑓 ,𝑆𝑖 ≠ 𝑛𝑢𝑙𝑙

0 𝑝𝑝𝑟𝑒 𝑓 ,𝑆𝑖 = 𝑛𝑢𝑙𝑙
(6)

6.5 Optimizations
We aimed to minimize 𝐶𝑡𝑜𝑡𝑎𝑙 by searching optimal placement for a

specific step 𝑎 (i.e., 𝑎 = argmin𝑎 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎)). Finding optimal place-

ment by computing 𝐶𝑡𝑜𝑡𝑎𝑙 for each possibilities is impractical due

to unnecessary latency and computational overhead. We instead

used simulated annealing to approximate the global optimal [50].

Make a Move by Choosing the Neighbour Solution. We chose

the neighbour solution 𝑎𝑖+1 = (𝑟 𝑖 + 𝛿𝑟 𝑖 , 𝑐𝑖 + 𝛿𝑐𝑖 ) by making a move

of current solution 𝑎𝑖 = (𝑟 𝑖 , 𝑐𝑖 ) at iteration 𝑖 . Eqn. 7 describes our

approach to determine the change over width (𝛿𝑟
𝑖
) and height (𝛿𝑐

𝑖
)

of the anchoring surface at iteration 𝑖 that yields smallest 𝐶𝑡𝑜𝑡𝑎𝑙 ,

where (𝛿𝑟 𝑖 , 𝛿𝑐𝑖 ) ∈ {(𝛿𝑟 , 𝛿𝑐 ) |𝛿𝑟 , 𝛿𝑐 ∈ {±1, 0} ∧ 𝛿𝑟𝛿𝑐 ≠ 0}.

𝛿𝑟 , 𝛿𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛿 ′𝑟 ,𝛿
′
𝑟
𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎𝑖+1 = (𝑟 𝑖 + 𝛿 ′𝑟 , 𝑐𝑖 + 𝛿 ′𝑟 )) (7)
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Surface 2
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Each end point 
indicates a 
move
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in the search 
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converging at local 
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Figure 10: (a) Example placement attempts (the green trace).
The darker color of the anchoring surface indicates a lower
𝐶𝑡𝑜𝑡𝑎𝑙 ; (b - d) Example optimized cost over each iteration
using greedy algorithm (b) and simulated annealing ap-
proach (c). To increase readability, 𝑙𝑜𝑔 scale is applied for
𝑦-axis. We only showed the traces before current cost reach-
ing global minimal.

Notably, to ensure the sampled neighbouring solution is on the

target anchoring surface, Eqn. 8 should be satisfied.

0 ≤ 𝑟 𝑖+1 ≤𝑊 0 ≤ 𝑐𝑖+1 ≤ 𝐻 𝑟 𝑖+1, 𝑐𝑖+1 ∈ N (8)

Although suchmethod performswell whilemakingmoveswithin
single anchoring surface, the attempted solution will not be made

across the surfaces. To address this, we specify that the placement

on the neighbour anchoring surface, which is closest to the current

placement attempt, would be chosen upon Eqn. 8 being violated.

Fig. 10a demonstrates an example of how the neighbour solution

is chosen while placement moving across the surfaces. To prevent

converging at local minimal, we choose a random move in the

global search space if 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎𝑖+1) > 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎𝑖 ) [50].
Metropolis-Hastings Sampling and Simulated Annealing.We

first selected a random placement on one of anchoring surface(s)

randomly and used the Metropolis-Hastings algorithm [61] to sam-

ple the subsequent attempt. The probability for accepting the new

attempt 𝑎𝑖+1 is determined by Metropolis criteria. Eqn. 9 defines

the the transition kernel of the Markov chain, where 𝑇 (𝑖) indicates
the temperature that will decay over the iteration.

𝑝 (𝑎𝑖+1 |𝑎𝑖 ; 𝑖) =𝑚𝑖𝑛{1, 𝑒𝑥𝑝 (𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎
𝑖 ) −𝐶𝑡𝑜𝑡𝑎𝑙 (𝑎𝑖+1)
𝑇 (𝑖) )} (9)

Notably, we used the empirical definition of 𝑇 (𝑖), where 𝑇 (𝑖) =
𝑇1
𝑖+1 [50, 51]. Experimentally, we set 𝑇1 = 100, and the number of

iterations 𝑖𝑚𝑎𝑥 = 200.

Comparisons of Optimization Performance. Fig. 10 demon-

strates an example optimization result while attempting to place a

step in front of sink that consist of four anchoring surfaces (Fig. 8c).
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(b) (c) (e)∗∗ (ART-C) ∗∗∗ ∗∗∗ (ART-C)∗∗(a) (d) Neither Agree Nor Disagree
Agree Strongly Agree

68

Figure 11: Results of authoring pipeline evaluations. (a - d) The overall SUS, weighted TLX scores, TCT of extracting document
profiles, and the average task completion time for deciding each instruction step with segmented instruction step; (d) Survey
results of how participants assessed the overall authoring pipeline and authored MR experience.

To better demonstrate the merits, we used greedy approach that

tries each possibilities (Fig. 10b) and simulated annealing approach

(Fig. 10c). Fig. 10a visualizes the 𝐶𝑡𝑜𝑡𝑎𝑙 at each pixel on the anchor-

ing surfaces with greedy approach, where darker area indicating a

lower 𝐶𝑡𝑜𝑡𝑎𝑙 . We showed that the greedy approach and simulated

annealing approach need to make 2650 and 49 attempts respectively

before finding the global minimum.

7 IMPLEMENTATIONS
We implemented the authoring pipeline on an iPad (9th generation)

and the consumption pipeline on the Quest Pro [11] due to its

colored passthrough, as well as eye [8] and hand tracking [10, 31]

capabilities. We also implemented an optimization server using

Unity 2021.3.9 [2] on a separate machine, and a Flask server for

managing document (Sec. 5) and spatial profiles (Sec. 6).

8 USER STUDIES
Two within-subject studies were designed to evaluate PaperToPlace.
12 participants (PA1 - PA12) were recruited for evaluating the au-

thoring pipeline and another 12 participants (PC1 - PC12) were

recruited for evaluating consumption pipeline. During the evalua-

tion, participants either authored or consumed the MR experiences

for three cooking tasks (T1 - T3) that could be easily conducted in a

typical office kitchen. Each study consists of two sessions where par-

ticipants need to complete the designated tasks that involves with

four key objects: microwave, fridge, sink, and countertop (Fig. 15).

We used T1 as the training task, through which participants could

get familiar with the designed interfaces. T2 and T3 were used

for formal evaluations, each of which could be completed within

10 ∼ 15 min. Appendix A provides the details of instructions.

8.1 User Study 1: Authoring Pipeline
The first study aims to understand how well our authoring pipeline

can support authors in easily and rapidly creating anMR instruction

experience with manual or ML-assisted mode (Sec. 5.3). We aim to

tackle three Research Questions (RQs):

• (RQ1) How the proposed authoring pipeline usable?

• How the ML could support (RQ2) a faster and (RQ3) an easier
authoring experience?

Participants and Procedures. PA1 - PA12 (age,𝑀 = 25.33, 𝑆𝐷 =

2.81, incl. eight males and four females) were recruited. Six partici-

pants disagreed that they are experts of the designated tasks, with

the remaining participants held a neutral opinion. After training

participants to use both of interfaces with T1, participants then

completed one task for each interface condition (manual and ML-

assisted). The tasks and interface conditions were counterbalanced

across participants (Fig. 15 in Appendix B). Participants were finally

instructed to briefly test the MR experience that was authored, to

see if they were satisfied with the authoring outcomes inside MR.

After each session, participants were asked to rate how strongly

they agree with three prompts, shown in Fig. 11e, in a 5-point Likert

scale. Participant were then invited to fill out the NASA TLX [46],

followed by System Usability Scale (SUS) [26], as approximations of

perceived workload and level of system usability. A semi-structured

interviewwas conducted to understand participants’ responses. The

study on average took 37.87 min (𝑆𝐷 = 5.45 min).

Measures.We analyzed the differences in the overall SUS, weighted

TLX scores, and Task Completion Time (TCT) while extracting doc-

ument profiles using both the manual and ML-supported modes.

Shapiro-Wilk test [65] was used to check the normality of data

in each catalogue. Repeated Measure Analysis of variance (RM-

ANOVA) [43] with Tukey’s HSD [19] (𝛼 = 0.05) were used for

analyzing statistical significance and post-hoc comparisons. Upon a

failure of normality check, the Aligned Rank Transform (ART) [70],

followed by ART contrast test (ART-C) [38] were used as the non-

parametric approach for statistical significance analysis and post-
hoc test2. The partial eta square (𝜂2𝑝 ) was used to evaluate the effect
size for ART and RM-ANOVA, with .01, .06 and .14 indicating the

thresholds for small, medium and large effect size [35]. We used

thematic analysis [25], and deductive and inductive coding [39] to

analyze qualitative data, to understand participants’ experience.

Results and Discussions
Overall, most participants found the authoring pipeline easy to

use (RQ1), and agreed that the ML-assisted mode could help the

authoring experience faster (RQ2) and easier (RQ3).

Is the Proposed Authoring Pipeline Usable (RQ1)? Both man-

ual (𝑀 = 70.61, 𝑆𝐷 = 17.23) andML-assisted (𝑀 = 86.88, 𝑆𝐷 = 8.33)

modes demonstrate good system usability, where an overall SUS

score ≥ 68 is interpreted as “good” [62, 63]. All participants agreed

that both pipelines are easy to use (Fig. 11a). For example: “they are
easy to use! [... and] integrated very good!” (PA1) and “it has a really
good workflow” (PA9). While 11 participant believed that they could

2
Notations for indicating the post-hoc test results shown in Fig. 11, 14, and 13: ∗
(𝑝 < .05), ∗∗ (𝑝 < .01), ∗ ∗ ∗ (𝑝 < .001).
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Third-Person View First-Person MR View

(a) (b)
Figure 12: Baseline scene. Third-person (a) and first-person
view through MR (b).

author such MR experience with both interfaces rapidly (Fig. 11e),

PA10 held a neutral opinion, as she expected a fully automated

system to extract the key objects associated with each instruction

step. Overall, 10 participants were satisfied with the MR experi-

ence they authored (Fig. 11e). Examples include: “a cool way to
transfer knowledge” (PA2) and “useful to see [the instruction] while
cooking” (PA12). Few participants suggested the reason(s) for being

not fully satisfied with the authored MR experience. For example,

“I think I made some mistake when I author it. So it guided me to
the wrong spot” (PA5) and “I have to do [the tasks with authored
experience] by myself, to see what it is like for me to experience that
first before having a novice do it so” (PA12). These implied the lack

of ways to enable the authors to revise the authored experience

inside MR iteratively.

Can ML Support a Faster Authoring Experience (RQ2)? The
RM-ANOVA showed a reduced overall TCT (𝐹1,22 = 16.66, 𝑝 < .001,

𝜂2𝑝 = .43, Fig. 11c) and average TCT (ART: 𝐹1,22 = 35.98, 𝑝 < .001,

𝜂2𝑝 = .77, Fig. 11d) for authoring each step while using ML-assisted

mode, versus manual approach. Most participants echo such obser-

vations. For example: “it could help me saving time, because [the key
objects have] already [been] filled out [...] it speeds up by maybe a
half a second [for each instruction]” (PA3) and “it helps me to save a
lot of time! And that makes it a lot more convenient!” (PA4)

Can ML Support an Easier Authoring Experience (RQ3)? The
RM-ANOVA demonstrated a higher SUS (𝐹1,22 = 8.65, 𝑝 = .008,

𝜂2𝑝 = .28, Fig. 11a) and a lower TLX score (ART: 𝐹1,22 = 17.24, 𝑝 =

.002, 𝜂2𝑝 = .61, Fig. 11b) of the ML-assisted mode, compared to the

manual counterpart. Most participants appreciated the convenience

and helpfulness brought by the predicted key objects. First, nearly

all participants believed that the ML helped on reducing effort for

tagging key objects. For example: “ML brought less effort, I just need
to check if the predicted key object is correct or not [...] Even if I
still need to check it, I don’t have to pay 100% of attention. I don’t
have to do all the thing. I just have to do part of the thing” (PA3),
Particularly, the features of real-time predicting the new key object

while modifying a specific step were favored by some participants.

For example: “when I saw one of the step to be very long and [are
associated with two key objects] [...] capable of predicting key object
after being modified is obviously helpful! And also the opposite feature
where you could just like combine two tasks, followed by generating
predicted key object! [...] it gives more flexibility while segmenting
the instruction step” (PA10).

Second, some participants highlighted the helpfulness for the

mental thought process for ML-assisted mode. “I was able to create

∗ ∗∗ (ART-C)(a) (b) Neither Agree Nor Disagree 
Agree Strongly Agree

(c)

68

Figure 13: Consumption pipeline evaluation results. (a - b)
Overall SUS and TLX score; (c) Survey results of how par-
ticipants considered the overall consumption experience of
PaperToPlace faster and easier, versus baseline. “B/L” and
“P2P” indicate baseline and PaperToPlace condition.

a mental map of how I will spatially move across at different instances
[by looking at the predicted key objects]” (PA4) and “it could help
me make a decision” (PA3). Particularly, PA5 appraised the feature

of predicting key object in real-time while revise the instruction:

“[while adding or editing the steps based on existing paper instruction],
the real-time predicted location could help create a more clear instruc-
tion step. For example, if I type ‘heat the water’, and the predicted
location is oven for somehow, then I might just type ‘heat the water in
the microwave’ to make the instruction more clear” However, PA10
held an opposite opinion: “I just read the instruction step and then
check if this assigned [key object] was countertop or not, and changed
it to countertop rather than going and checking the other options. [...]
but I did not read [the predicted key object] first.”

Finally, few participants suggested the merits of using color scale

to visualize the confidence of predicted key object. For example:

“color could be helpful for conveying uncertainty” (PA9) and “color
confidence is important to me. If it’s red, I would be more aware of
checking whether this is actually correct or not” (PA12).

8.2 User Study 2: Consumption Pipeline
The second study aims to evaluate the consumption pipeline and

attempts to address: “how the PaperToPlace could help the consumers
to complete the designated activities faster and easier?”

Participants and Procedures. PC1 - PC12 (age,𝑀 = 27.83, 𝑆𝐷 =

6.55, incl. six males and six females) were recruited. All partici-

pants were not familiar with the designated tasks. We also built

a baseline experience where the consumers could read existing

monolithic instruction document inside MR (Fig. 12). Instead of

asking participants to read a paper document, rendering a virtual

monolithic document attached to the touch controller could mini-

mize the impacts of confounding factors caused by uncomfort of

the headset. We designed two sessions (Fig. 15) with counterbal-

ancing being considered to minimize the impacts of prior learning

experience and task familiarity. Before each session, T1 was used

to help participants learn and familiarize with the system. During

the session, participants were instructed to complete T2/T3 using

the baseline and PaperToPlace. Participants were invited to fill out

NASA TLX [46] and SUS [26] at the end of each session, followed

by a semi-structured interview.

Measures. To understand the performance of context switching,

we defined each episode as the interval between the time when
participants stopped a task to seek instructions and when they returned
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(b) (c) (d) (e) (f) (g)∗∗∗ (ART-C) ∗∗ (ART-C) ∗∗∗ ∗ ∗∗∗ (ART-C) ∗∗ (ART-C)(a) ∗∗∗

Figure 14: Results of context switching evaluations. (a) The total number of context switching while using the monolithic
document and PaperToPlace. The average time (b), 𝑑ℎ𝑒𝑎𝑑 (d), and 𝜃ℎ𝑒𝑎𝑑 (f) during each episode; The total time (c), 𝑙ℎ𝑒𝑎𝑑 (e), and
𝜃ℎ𝑒𝑎𝑑 (g) during all episode while completing the task. “B/L” and “P2P” indicate the baseline and PaperToPlace conditions.

to the task. During each episode, we analyzed the (i) time; (ii) the
distance of path of headmovement (𝑑ℎ𝑒𝑎𝑑 ); (iii) the angular changes
of the forward direction of the head (𝜃ℎ𝑒𝑎𝑑 ). The data lies outside

of such intervals are out of our scope, as the performance of real-

world activities could be affected by participants’ prior cooking

experience. Same approaches in Sec. 8.1 were used to analyze the

questionnaire responses and participant’s qualitative feedback. The

study on average took 59.40 min (𝑆𝐷 = 5.80 min).

Results and Discussions. Overall, most participants believed

that the PaperToPlace could help the consumers to complete the

designated tasks faster and easier (Fig. 13c). Quantitatively, we

demonstrated a higher overall SUS score (𝐹1,22 = 4.44, 𝑝 = .046,

𝜂2𝑝 = .17, Fig. 13a) and a lower perceived workloads (ART: 𝐹1,22 =

18.52, 𝑝 = 0.001, 𝜂2𝑝 = .63, Fig. 13b). Based on participants’ feedback,

we now discuss how PaperToPlace could help participants complete

the designated tasks faster and easier.

Context Awareness Reduces the Effort of Context-Switching.
PaperToPlace reduces the average time (ART: 𝐹1,22 = 49.18, 𝑝 < .001

𝜂2𝑝 = .82, Fig. 14b), 𝑑ℎ𝑒𝑎𝑑 (𝐹1,22 = 57.29, 𝑝 < .001 𝜂2𝑝 = .72, Fig. 14d)

and 𝜃ℎ𝑒𝑎𝑑 (ART: 𝐹1,22 = 51.19, 𝑝 < .001 𝜂2𝑝 = .82, Fig. 14f) on

each episode. While PaperToPlace on average leads to frequent

document readings (𝐹1,22 = 15.77, 𝑝 < .001, 𝜂2𝑝 = .42, Fig. 14a), the

accumulated time (ART: 𝐹1,22 = 9.20, 𝑝 = .020 𝜂2𝑝 = .42, Fig. 14c),

𝑑ℎ𝑒𝑎𝑑 (𝐹1,22 = 5.30, 𝑝 = .030 𝜂2𝑝 = .19, Fig. 14e) and 𝜃ℎ𝑒𝑎𝑑 (ART:

𝐹1,22 = 7.48, 𝑝 = .019 𝜂2𝑝 = .40, Fig. 14g) of all episodes are reduced.

First, participants suggested the convenience for referring back

to the instructions repeatedly with PaperToPlace. For example:

“[with baseline], I need to check it back and forth every time while
trying to grab food from the fridge [...] [PaperToPlace] gives me feeling
like [the instruction] is just on my side. It’s like always on my side, like
right beside my head” (PC9) and “because [the step] would always
be right there with just a little bit of information I need, I think it’d
be very useful” (PC11). Most participants explicitly highlighted the

benefits of finding optimal placements, without causing occlusions

to the key interaction areas. For example: “it is useful to bring the
instruction step to me by just a pinch.” (PC10), “I like the position of
instruction step!” (PC4), and “I think it is useful! And especially the
function of where you pinch again, it will move to another location, so
it can ensure [the step] will never block your sight” (PC8). More exam-

ple of instruction step placements could be referred to Fig. 20e - h.

However, PC6, who unveiled her ADHD [34], suggested: “I was dis-
tracted with [the PaperToPlace], because [when the step occasionally
was not anchored on the optimal position] the information was here
and I was there. It reminded me of the moments that I forgot what I
was supposed to do, or what I have to do.”

Second, most participants acknowledged the helpfulness by es-

tablishing connections between instructions and key objects. For

example: “I like how it took me to the sink because this activity
has to be near the sink. That’s a very helpful on spatial understand-
ing!” (PC4), “Although we know where the fridge is, having that is
really convenient to just not give anything a thought and do things
as per the instructions” (PC10).

Finally, five participants also mentioned the merits of hands-free

of PaperToPlace, compared to the baseline where the consumers

need to hold the virtual document. For example “[baseline] is more
cumbersome, because I need to free one hand and make the hand very
clean to make sure that the hand is clean to touch the controller” (PC5).

Segmented Instruction Helps Findings the Relevant Infor-
mation Easier. All participants suggested that the segmented in-

structions is helpful, e.g., “[instructions] need to be as concise and
as short as possible to be read at the same time. [PaperToPlace] did
its job!” (PC5). Most participants suggested the merits of reducing

stress while translating instruction into real world activities. For

example: “I have more calmness [with PaperToPlace], because [with
baseline] I was seeing everything all at once, and that was giving me
the feeling I’m in a hurry.” (PC7), and “looking at the entire document
at once was so hard that I forgot where I have to keep following from
start to finish to find where I was. But [PaperToPlace] gave me one by
one instructions, which is super easy!” (PC3)

9 LIMITATIONS AND FUTUREWORKS
We identify our limitations from four perspectives.

(1) Enabling an Iterative Authoring Process. We observed that

during authoring, participants intended to segment the instruction

steps by only considering whether only one key object is associated
with the specific step, without synthesizing other factors (e.g., the
density of the information contained by single step while viewed

inside MR). However, this cannot ensure a satisfied MR experience

from the perspective of the consumers. Future work might investi-

gate potential iterative authoring workflow that allows the authors

to refine their authored document profile inside MR while piloting

the created instructional MR experience.
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(2) Transforming Richer Metadata into MR Experiences. We

consider that the metadata of each instruction step only contains
the text of the step and the key objects that the virtual step should

be anchored on (Sec. 4.1). This might not be realistic for real-world

instruction documents with heterogeneous kinds of metadata, such

as the duration information, the caveats that usually requires the

consumers’ attention, and the notifications from the environmental

sensors. For example: “I would like to have warning text, like ‘do not
use detergent’, maybe show up in a different color or something” (PC4).
Future research might investigate the richer metadata that need

to be augmented inside the MR experience, and the methods to

use existing language models to extract such metadata as well as

transform them into spatialized and context-aware MR experience.

(3) Automatically Switching between Instruction Steps and
Triggering the Position Update of the Instruction Label.We

currently required consumers to explicitly click the virtual button

to switch to the next instruction step, and to pinch to update the

current position of the instruction step on demand (Sec. 6.1). While

participants (e.g., PC10) with some prior MR experience felt it is

“easy and useful” to use the virtual hand menu and pinch gesture,

others (e.g., PC1) suggested the frustrations of occasional failures

of pinch gesture detections and the virtual button clicking. Future

workmight consider designing a state machine, which could specify

how to switch to the subsequent step automatically based on user’s

activities that might be inferred from face (e.g., [28]), body (e.g., [5])
and environmental (e.g., [20, 24, 27]) sensor data.

(4) Supporting a Broader Range of Applications. While many

participants believed “cooking demonstrates [PaperToPlace] very
well” (PC4), we only evaluated on cooking instructions, due to the

poor quality of passthrough capabilities of Quest Pro [11]; availabil-

ity of dataset to fine tune language model for alternative instruction

activities; and limited study resources. Future work might explore

other activities with more powerful language model such as GPT

and prompt engineering techniques being used for creating docu-

ment profiles. Participants also emphasized the values of adaptive

placements (e.g., “the adaptive placement of instruction is definitely
useful for paper cutting! I don’t want to cut my hand. And I wanted
the instruction to be always besides my hand” (PC9)) and reduced

context switching (e.g., “in the gym, where I need some instructions
to teach me how to use the equipment, such as how you hold the gears
with good postures. [...] with [baseline], it is less efficient and [I have]
to stop in between and read the instructions” (PC2)) that might be

transferred to other activities. Another direction is to investigate

the support for finer grained tasks that might be involved with

moving objects, leading to a dynamically changed spatial profile.

For example, “if you are doing PCB soldering, it might be hard to
track that tiny component and to pinpoint the exact location on the
PCB board. But if [PaperToPlace] can do that, it will be super help-
ful!” (PC8). This requires high quality passthrough and capabilities

to track real-time location of the electronic components which are

considered as non-static key objects. Instead of using Quest Pro, fu-

ture researchers might consider a more recent higher-end headset,

e.g., Vision Pro [18].

10 CONCLUSION
We present and evaluate PaperToPlace, comprising an authoring
pipeline, which allows authors to rapidly transform existing pa-

per instructions into a MR experience, and a consumption pipeline,
which enables consumers to view spatialized instructions using

a context-aware approach. Two within-subject studies with two

different cohorts of 12 participants demonstrate the usability and ef-

fectiveness of the proposed authoring and consumption workflows.
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Step Descriptions

• Spray microwave-safe container (e.g., mug, ramekin, or egg cooker)

with cooking spray or wipe lightly with vegetable oil.

•Whisk eggs, milk, salt and pepper in container (or whisk ingredients

in another bowl and pour into microwave container). If using a mug

or ramekin, cover with plastic wrap, pulling back small area for

venting. If using an egg cooker, place lid on cooker base, lining up

notches. Twist to secure.

•Microwave on Medium-High (70% power) for 90 seconds, stirring

several times during cooking.

• Cover and let stand for 30 seconds to 1 minute before serving. Eggs

will look slightly moist, but will finish cooking upon standing.

Table 2: Experimental cooking recipe for making basic mi-
crowave scrambled eggs (T1).

A EXPERIMENTAL TASKS
The selected tasks for final user study (Sec. 8) include:

• (T1) Microwave Scrambled Eggs [4];

• (T2) Quick Microwave-Poached Eggs on Avocado Toast [15];

• (T3) Instant Mac ‘n’ Cheese [1];

Table 2, Table 3 and Table 4 offers the supplementary material

regarding the specific instruction steps of the experimental tasks

T1, T2, and T3 respectively. Notably, T1 was used as the training

tasks for participants to learn and get familiar with the interfaces

(Table 2). Assuming the results from OCR is fully correct (i.e., all
texts of all instruction steps could be successfully extracted), the

overall accuracies of the associated key objects predicted by our pre-

trained language model for each experimental tasks are 50% (T1),

84.62% (T2), and 80.00% (T3). Notably, the overall accuracies for

T2 and T3 are closed to our benchmark results while fine-tuning

the BERT model in Sec. 5.3, which is 82.13%. This ensures the

results yielded by the evaluation of authoring pipeline (Sec. 8.1) is

generalizable to some extend. Although the overall accuracy of T1

is far lower than our benchmark results due to the relative short

of instruction document, the instruction of T1 was only used for

participants to familiarize themselves with the given interfaces

(either on iPad or inside MR), and the data yielded by T1 was

excluded from our evaluation results in Sec. 8.

B USER STUDY RESULTS
This section presents supplementary material for Sec. 8. Fig. 15

shows the specific tasks and interface conditions that were assigned

while evaluating authoring and consumption pipeline. Notably, T1

was used for training purposes.

We also provide visualizations of survey responses for authoring

pipeline evaluations (Sec. B.1) as well as consumption evaluations

(Sec. B.2).

B.1 Evaluations of Authoring Pipeline
Fig. 16 demonstrates the NASA TLX responses of each perceived

workloads from participants PA1 - PA12, while using manual and

ML-assisted interfaces to extract document profile from designated

paper instruction. Fig. 18 provides supplementary material of sur-

vey results of SUS questionnaires. For Fig. 16 and Fig. 18, we use

https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.3389/frvir.2021.647997
https://doi.org/10.1145/3379337.3415815
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1109/vrw52623.2021.00107
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Step Descriptions

• In a small bowl, combine the basil leaves and sea salt, and set aside.

• Take a tomato from the fridge.

• And gently clean a tomato with your hand to help remove dirt and

bacteria. Do not use detergent, soap, or bleach.

• Then cut the tomato into parallel thin slices working from the top

of the tomato towards to the bottom and set aside.

• Take an avocado from the fridge.

• Cut and mash the avocado in a small bowl. Squeeze the lemon into

the avocado and spread liberally on the toast. And put tomato on top

of the toast.

• Pour 1/2 cup (118 ml) water into a microwave-safe coffee mug.

• Crack 1 egg into the mug, cover with a small plate, and microwave on

high for 30 seconds.

• Take the mug out of the microwave, lift the plate carefully (to let

steam escape) and check the egg.

• If the white is not completely set, cover and continue to microwave in

10-second intervals until the egg white is opaque. (The time varies with

the power of the microwave and may take up to 60 seconds).

• Carefully pour off the water in the mug, using a slotted spoon to keep

the egg from falling out.

• Transfer the egg to one of the slices of avocado toast.

• Sprinkle the toasts with the seed mixture and serve immediately.

Table 3: Experimental cooking recipe for making an avocado
toast with a microwave-poached egg (T2).

Step Descriptions

• Find a mug that holds twice the volume of your dry pasta – the

bigger, the better.

• Add the macaroni.

• Add some water.

• Cover with cling film and pierce 3 times.

• Stand the mug in a microwave-proof bowl to catch any spillages, and

cook in the microwave on high for 2 minutes. The liquid will bubble

up and over the sides, so tip any liquid from the bowl back into

the mug (be careful as it will be very hot) and give it a good stir.

• Leave to stand for 1 minute.

• Repeat twice more or until the pasta is cooked (it may take longer

depending on the pasta).

• Then remove from the microwave.

• Repeat twice more or until the pasta is cooked (it may take longer

depending on the pasta).

• Stir through the butter, cheese and spinach or Marmite, if using.

• The heat from the pasta should melt the cheese and wilt the spinach,

but if not, pop back in the microwave for 30 seconds.

Table 4: Experimental cooking recipe for making mi-
crowaved mac ‘n’ cheese (T3).

“Manual” and “ML” to indicate the interface condition while man-

ual and ML supported approaches are used while extracting the

associated key objects from each instruction steps, respectively.

B.2 Evaluations of Consumption Pipeline
Fig. 17 demonstrates the NASA TLX responses of each perceived

workloads from participants PC1 - PC12, while using baseline and

PaperToPlace interfaces to perform the designated tasks. Fig. 19

Study 1: Authoring Pipeline Study 2: Consuming Pipeline

Participant Session 1 Session 2 Participant Session 1 Session 2

PA1 – PA3 Without ML 
Supported, T2

With ML 
Supported, T3

PC1 – PC3 Non-Context-Aware 
& Non-Spatialized, T2

Context-Aware & 
Spatialized, T3

PA4 – PA6 Without ML 
Supported, T3

With ML 
Supported, T2

PC4 – PC6 Non-Context-Aware 
& Non-Spatialized, T3

Context-Aware & 
Spatialized, T2

PA7 – PA9 With ML 
Supported, T2

Without ML 
Supported, T3

PC7 – PC9 Context-Aware & 
Spatialized, T2

Non-Context-Aware 
& Non-Spatialized, T3

PA10 – PA12 With ML 
Supported, T3

Without ML 
Supported, T2

PC10 – PC12 Context-Aware & 
Spatialized, T3

Non-Context-Aware 
& Non-Spatialized, T2

Figure 15: Study design for evaluating PaperToPlace. Each
participant needs to conduct session 1 and session 2 in order.
T2 and T3 were used for formal evaluation while T1 was used
for training purposes.

Figure 16: Survey results of NASA TLX questionnaires. We
use “Manual” and "ML" to indicate the interface condition
while manual and ML supported approaches are used for
extracting associated key objects from each instruction steps,
respectively

Figure 17: Survey results of NASA TLX questionnaires. We
use “B/L” to refer to the baseline interface, and “P2P” to in-
dicate PaperToPlace, which delivers spatialized and context-
aware instruction step.

provides supplementary material of survey results of SUS ques-

tionnaires. To be consistent with the remaining of this paper, we
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Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

(a)

(b)

Figure 18: Survey results of SUS questionnaires of authoring pipeline evaluations. We use “Manual” and “ML” to indicate
the interface condition while manual and ML support approaches are used for extracting associated key objects from each
instruction steps, respectively. To increase readability, we cluster the survey results of positive statements (Q1, Q3, Q5, Q7,
Q9) into subplot (a), where a higher level of agreement indicates a better user experience. The survey results of negative
statements (Q2, Q4, Q6, Q8, Q10) are clustered into subplot (b), where a lower level of agreement indicates a better user
experience.

use “B/L” to refer to the baseline interface, and “P2P” to indicate

PaperToPlace, which delivers spatialized and context-aware instruc-

tion step. Finally, Fig. 20e - h showed examples of how the virtual

instructions steps would be anchored on the key objects with the

consumption pipeline of PaperToPlace, which are easy to read and

would not occlude the consumer’s sight while completing the tasks.

C CODEBOOK AND THEMES FROM
QUALITATIVE DATA ANALYSIS

We used thematic analysis [25], and deductive and inductive cod-

ing [39] to analyze qualitative data, collected from preliminary

needs-finding study (Sec. 3) and final user study (Sec. 8). As part

of supplementary material, we attached the resultant codebook in

Fig. 21, Fig. 22 and Fig. 23, respectively. Notably, “Count” refers to

the number of quote for each theme or code. It is also possible that

multiple codes are assigned to one quote.

D ETHICAL DISCLAIMER
This work has been approved by the Institutional Review Board

(IRB). All Personal Identifiable Information (PII), such as the face

has been intentionally removed (e.g., being pixelized or blurred)

in this manuscript as well as all accompanion videos. Before each

user study, we have obtained participants’ consent on video and

audio recordings, as well as heterogeneous behavior data collections.

All participants have consented and acknowledged the data and

results presented in this manuscript, to be published and presented

publicly for research purposes. While monetary incentives were

not provided, all participants had the opportunity to try out and

experience state-of-the-art MR technologies, and to know further

about our research.
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Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

(a)

(b)

Figure 19: Survey results of SUS questionnaires of consumption pipeline evaluations. We use “B/L” to refer to the baseline
interface, and “P2P” to indicate PaperToPlace, which delivers spatialized and context-aware instruction step. To increase
readability, we cluster the survey results of positive statements (Q1, Q3, Q5, Q7, Q9) into subplot (a), where a higher level of
agreement indicates a better user experience. The survey results of negative statements (Q2, Q4, Q6, Q8, Q10) are clustered into
subplot (b), where a lower level of agreement indicates a better user experience.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Fridge Countertop Sink Microwave

Figure 20: First-person view throughMRof the examples of placing instruction step next to the key objectswith our consumption
pipeline. Example key objects include fridge (a), countertop (b), sink (c), and microwave (d).
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Theme/Code Count Theme/Code Count

Reading Instruction Document 64 Thoughts while Designing MR based Instruction Experience 44

Reading method 13 Needs of spatial guidance in MR 7

Overwhelm of irrelevant information 11 Unnecessary spatial guidance can be visual disturbance in MR 
experience

7

Challenge of finding relevant information 6 Segment instruction document and only keep relevant information 6

Frustration on document reading 4 Capable of revising existing instruction document while designing MR 
experience

4

Lack of relevant visual components in documents 3 Capable of hiding irrelevant information in MR experience 6

Lack of emphasize on key information 10 Needs to connect document content to the workflow of activities 6

Needs of personalized information 9 Virtual instruction should be closed to the user 4

Lack of understanding of key concept 2 Comments related to the visualizations of progress status 4

Lack of key information in the instruction 6

Connecting to Environment and Real-World Activities 26

Relying on common sense 9

Needs some forms of feedback 1

Referring to document repeatedly while doing tasks 2

Failures of finding key objects or ingredient 2

Hard to connect with real-world activities 12

Figure 21: The codebook that resulted from our qualitative analysis of interview data for preliminary needs-finding study.
“Count” refers to the number of quote for each theme or code. It is possible that multiple codes are assigned to one quote.

Theme/Code Count Theme/Code Count

Overall Comments of the Pipeline 78 Can ML Support an Easier Authoring Workflow? 143

Feedbacks related to the system integrations 8 Comments related to overall performance 21

Benefits of using mobile camera on iPad to capture existing paper-
based instruction document

3 Comments related to overall efforts 35

Simple and easy to learn 19 Helpfulness to the mental cognitive load and thought process 15

Benefits of segmenting the parsed instruction document 12 Accuracy of predicted key objects 32

Other miscellaneous setbacks and improvements 4 Experience and thought process while checking and correcting the 
predicted key objects

14

Other generic overall comments 32 Experience of real-time prediction of key objects upon the change of  
text of instruction steps

10

Can ML Support a Faster Authoring Workflow? 26 Affordances of visualization of confidence using color scale 14

Subjective experience of the temporal benefits 17 Other miscellaneous setbacks and improvements 2

Rationales of potential reasons for a faster authoring workflow with
ML-supported mode

9 Comments after Evaluating the Authored Instruction MR Experience 31

Positive comments and appreciations 25

Setbacks and improvements 6

Figure 22: The codebook that resulted from our qualitative analysis of interview data for authoring pipeline evaluations.
“Count” refers to the number of quote for each theme or code. It is possible that multiple codes are assigned to one quote.
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Theme/Code Count Theme/Code Count

Context Awareness Reducing the Effort for Context Switching 90 Other Aspects of System Usability 97

Subjective feelings of reduced efforts for context switching 17 System is easy to learn 7

Benefits and subjective experience of accuracy of placed instruction 
step

19 Overall affordance in terms of mental workload 15

Costs and setbacks of occasional non-optimal placed instruction step 16 Overall affordance in terms of task completion time 7

Methods to requesting instruction step through hand pinch 22 Benefits for helping with spatial understanding 14

Promising and have potentials for more complex and spatialized tasks 15 Needs of other types of metadata 2

Imperfect for steps that are involved with find-grained activities 1 Occlusions of rendered skeleton of tracked hands 5

Segmented Instruction Helps Findings the Relevant Information Easier 48 Quality of video see-through (such as visual distortion etc.) 14

Subjective feelings of more calmness 6 Failure tracking of hand and controllers 1

Other comments of merits of segmenting instructions 24 Needs of hand(s) for baseline interface 18

Comments related to readability and monolithic nature of the baseline 
interface

18 Other miscellaneous comments 14

Brainstorm and Discussions related to Broader Applications 31

Enumerate examples of possible applications 18

Needs of multimedia support 1

Benefits of deciding optimal placements of instruction step for the 
discussed applications

8

Improvements of current system for future applications 5

Figure 23: The codebook that resulted from our qualitative analysis of interview data for consumption pipeline evaluations.
“Count” refers to the number of quote for each theme or code. It is possible that multiple codes are assigned to one quote.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Integrating Instruction Experiences into MR
	2.2 Designing Context-Aware MR Experiences

	3 Preliminary Needs-Finding Study
	3.1 Participants, Tasks, and Procedure
	3.2 Findings
	3.3 Design Considerations

	4 PaperToPlace System Overview
	4.1 Assumptions and System Walkthrough
	4.2 Application Scenarios

	5 Authoring Pipeline
	5.1 Document Capture and Parsing
	5.2 Selecting the Model and Key Objects
	5.3 Creating Document Profile

	6 Consumption Pipeline
	6.1 Interaction Design
	6.2 Problem Formulation
	6.3 Importance Map on Anchoring Surfaces
	6.4 Constraints and Costs
	6.5 Optimizations

	7 Implementations
	8 User Studies
	8.1 User Study 1: Authoring Pipeline
	8.2 User Study 2: Consumption Pipeline

	9 Limitations and Future Works
	10 Conclusion
	Acknowledgments
	References
	A Experimental Tasks
	B User Study Results
	B.1 Evaluations of Authoring Pipeline
	B.2 Evaluations of Consumption Pipeline

	C Codebook and Themes from Qualitative Data Analysis
	D Ethical Disclaimer

