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Abstract—Visualization recommendation systems make un-
derstanding data more accessible to users of all skill levels
by automatically generating visualizations for users to explore.
However, most existing visualization recommendation systems
focus on ranking all possible visualizations based on the attributes
or encodings, which makes it difficult to find the most interesting
or relevant insights. We therefore introduce a novel class of
visualization recommendation systems that automatically rank
and recommend both groups of related insights and the most
important insights within each group. Our approach combines
results across different learning-based methods to discover insights
automatically and generalizes to a variety of attribute types
(e.g., categorical, numerical, and temporal), including non-trivial
combinations of these attribute types. We then implemented a new
insight-centric visualization recommendation system, SpotLight,
which ranks annotated visualizations in visual insight groups.
Finally, we conducted a user study which showed that users are
able to quickly understand and find relevant insights in unfamiliar
data.

Index Terms—Insight-centric visualization recommendation,
insight-type recommendation, insight-type ranking, insight rec-
ommendation

I. INTRODUCTION

Visualization recommendation systems automatically suggest
visualizations to support exploratory data analysis (EDA) and
facilitate the visualization authoring process. These systems
often leverage principles of expressiveness and effectiveness to
produce recommendations that are agnostic to the specific data
set. In this paper, we introduce a novel class of insight-centric
visualization recommendation systems that automatically dis-
cover, rank, and visualize both specific insights and overarching
insight-types (or classes of insights) in an arbitrary data set. In-
stead of displaying all visualizations together, they are grouped
based on meaningful and intuitive insight-types and displayed
to the user as rows of visualizations ordered by importance. The
key idea here is that the system scores and recommends the top
insight-types, in addition to ranking the individual visualizations

(a) VISUAL INSIGHTS

(b) INSIGHT RANKING

(c) INSIGHT-TYPE RANKING

(d) ATTRIBUTE FILTER

(e) INSIGHT BOOKMARKING

Fig. 1. SpotLight is a web-based system for visual insight recommendation
that automatically recommends visualizations for the most relevant insights in
the data: (a) insights are automatically discovered; (b) insights are grouped into
rows, scored, and ranked based on the insight-type; (c) these rows are then
globally ranked and sorted; (d) users can interactively query recommendations
through attribute filters; and (e) users can bookmark the most important insights.

within each insight-type. This ranking enables users to quickly
find the most interesting and relevant insights.

There are two different but fundamentally important rec-
ommendation tasks in the proposed class of insight-centric
visualization recommendation systems: (1) recommendation
of the important top-r insight-types, and (2) ranking of the
top-k insights within each insight-type. In essence, once we
obtain the top-k recommended insights, the system can derive
the top-r recommended insight-types that best summarize
the most valuable insights that were identified in the data.
Given an arbitrary data set, the proposed class of insight-
centric recommendation systems (i) automatically discovers
the important insights for each insight-type using many different
learning and statistical models, (ii) scores and recommends
the top-r insight-types, (iii) scores and recommends the top-
k insights for every insight-type, (iv) infers an appropriate
visualization for each insight, and (v) recommends a relevant
insight annotation.

To demonstrate the utility of this approach, we contribute979-8-3503-2445-7/23/$31.00 ©2023 IEEE



a new insight-centric visualization recommendation system:
SpotLight. SpotLight currently supports 21 different insight-
types such as skew, multivariate outliers, and nonlinear cor-
relations (Table I). The insights for every insight-type are
discovered automatically using many different machine learning
methods, including both supervised and unsupervised methods.
Each insight-type is carefully designed to be meaningful to
the user, therefore enabling them to quickly understand the
relevant insights and their relative importance with respect to
any arbitrary user-uploaded data set.
The main contributions of this work are summarized as follows:

Insight-centric Visualization Recommendation. We propose
a novel class of insight-centric recommendation systems that
enables users to quickly understand, explore, and visually
identify relevant insights in their data. We further contribute
a new system of this type, SpotLight, which automatically
discovers, scores, and ranks the insights as well as the insight-
types that are most relevant in the data set of interest. We
evaluated SpotLight with 12 users to demonstrate the efficacy,
and show that users can quickly uncover a diverse and useful
set of insights in an unfamiliar data set.

Insight-Type Ranking. We introduce the notion of insight-type
ranking and describe a general approach for recommending the
most relevant insight-types for an arbitrary data set. SpotLight
leverages this approach to display the top-r recommended
insight-types to the user as rows of visualizations showing
insights of that type, with the rows sorted based on the relevance
of the underlying insights. The recommendation of insight-types
(as opposed to just insights) improves the user experience
making it significantly faster and easier for the user to identify
the most important insights.

Insight Ranking. We propose an insight recommendation
approach that derives a score for each of the discovered
insights within an insight-type. This ranking enables us to
derive the top-k insight recommendations for each of the
different insight-types. A key advantage of our proposed insight
ranking approach is that it can naturally leverage multiple
insight discovery methods, attribute combinations, attribute
types, visualizations, and so on.

Non-Trivial Insights and Insight-Types. The individual
insights for every insight-type are discovered automatically
using many different machine learning methods, including
both unsupervised and supervised techniques. SpotLight can
therefore recommend non-trivial insights that have complex at-
tribute combinations. Furthermore, SpotLight naturally handles
a wide variety of different attribute types including numerical,
categorical, and temporal. The recommended insights for
a specific insight-type can also have a varying number of
attributes and attribute types, thus allowing SpotLight to
produce a diverse set of recommended insights.

II. RELATED WORK

In this section, we introduce related work on insight discovery
and visualization recommendation, which informs our classifi-

cation of visualization recommendation systems introduced in
Section III.

A. Insight Discovery

There has been some related work on insight discovery, focus-
ing both on a specific use case and type of insight, or on the
general problem [1]. For example, prior work has contributed
novel approaches to discovering insights including correla-
tions [2]–[5], outliers and anomalies [6]–[11], and peaks [12],
as well as more general insight discovery techniques [13], [14].
Related work often focuses on specific use cases, such as insight
discovery for email data [15] or geovisualization [16]. For
example, NewsViz [16] offers an automatic system to generate
interactive geovisualizations for news articles. QuickInsights
[17] proposes an algorithm to extract the most useful insights
from data and uses pruning to remove obvious insights and
best-first prioritization. Agrawal et al. [18] propose a general
framework for efficiently discovering association rules in data.
Amar et al. [13] propose a set of 10 analysis task types which
visualization recommendation systems can use to produce
effective visualizations. Scorpion [19] proposes an approach to
reveal qualities in the data that may explain outliers. Voder [20]
helps people explore data through manual view specification.
Once users create a visualization, Voder utilizes a set of
predefined heuristics to generate a list of related data facts
(insights). DataSite [21], offers a system that identifies and
visualizes data facts based on pre-defined methods. However,
all of this related work focuses on specific insight-types,
customized insight discovery methods, or particular data types.
In this paper, we contribute a general-purpose solution to insight
discovery and ranking, which leverages many of the techniques
proposed by related work. Section IV further outlines the
specifics of our problem formalization.

B. Visualization Recommendation

In this paper, we consider three primary types of visualiza-
tion recommendation systems, namely, rule-based [22]–[28],
ML-based [21], [29]–[34], and insight-based systems [35].
Section III describes the general system properties consid-
ered for this classification. Related work has also discussed
frameworks for choosing the ideal visualizations for specific
data [36] and providing a general overview of how to approach
visualization recommendation based on other recommendation
system techniques [37].

Rule-based Systems. Most previous work on visualization
recommendation has focused on rule-based systems [38]–[40]
where visualizations are recommended based on a series of
manually defined if-then statements [26]–[28], [41]. Voyager
[41] proposes a hybrid approach that incorporates rule-based
decisions with support for user selected variables (columns).
In addition, some related work has proposed different types of
visualization generation tools [22]–[24] as well as tools to help
users produce their own visualizations, such as VizAsisst [42]
and Tableau [43].

ML-based Systems. VizML [30] focuses entirely on de-
sign choice classification (e.g., predicting the chart type),



and not other more challenging problems of visualization
recommendation, such as selecting the appropriate variables
for the visualization. Data2Viz [44] uses an end-to-end neural
translation model to map data specifications to visualizations.
DeepEye [45] combines rule-based visualization generation
techniques similar to work in the previous paragraph with
classification models to rank visualizations and classify them
as ”good” or ”bad.” DataShot [46] creates a data fact sheet
by analyzing the data for the most interesting data facts and
generating visualizations from them. Draco [47] extends the
rule-based system of Voyager by learning weights for manually
defined constraints. More recently, Xin et al. [29] proposed an
end-to-end learning-based visualization recommendation model
that is trained using a corpus of hundreds of data sets and
visualizations; the learned model can be applied to recommend
visualizations given any arbitrary unseen data set of interest.
Other recent work has focused on learning a personalized
visualization recommendation model called PVisRec [34] that
recommends interesting and highly relevant visualizations for
a user based on their past data and visualization preferences.
However, none of this related work focuses on recommending
insights, and thus solves a different problem.

Insight-based Systems. Insight-based systems recommend
visualizations based on properties of the specific data set that
will be visualized. Our system SpotLight is an example of
this type. This space has largely been under explored, but
the work closest to our own is Foresight [35]. Foresight is
an early example of an insight-based system that employs a
single heuristic insight method to identify insights based on the
marginal distribution of the attributes. Foresight then selects a
manually defined visualization based on the insight-type. In
contrast, we propose a more general approach to insight-centric
recommendation and ranking, and instantiate the techniques in
our own system, SpotLight. SpotLight automatically creates a
novel two-dimensional ranking of insight-types and individual
insights, that leverages many different learning-based insight
discovery methods to produce a robust ranking. Furthermore,
our proposed approach generalizes to a wider variety of
attribute types and a diverse set of visualization designs.
Notably, this work contributes a novel approach for ranking and
recommending both individual insights and overarching classes
of insight-types to facilitate rapid identification of relevant
insights in an arbitrary data set.

III. CLASSES OF RECOMMENDATION SYSTEMS

In this paper, we introduce a novel class of insight-centric
visualization recommendation systems, that goes beyond the
existing design-centric and preference-centric classes explored
in prior work. As a whole, visualization recommendation
systems aim to automatically generate visualizations, often
based on some form of user input. However, each specific
class of visualization recommendation system employs unique
characteristics to control the recommendation process. In this
section, we describe the key differences between the classes of
visualization recommendation systems and propose the unique
benefits posed by insight-centric approaches.

Fig. 2. Recommending visual insights from each insight-type. Insight-types
are also ranked and displayed accordingly to make it easy for the user to
quickly understand the most important insights in their data.

Design-centric systems leverage information about the un-
derlying data types (e.g., nominal, ordinal, quantitative) to
recommend visualizations based on principles of visualization
effectiveness and expressiveness. The goal in such systems
is to create “good” visualization designs by default to help
users rapidly create visualizations. However, such systems are
based entirely on principles of visualization design, and remain
agnostic to the underlying data distributions aside from a basic
consideration of data types.

Preference-centric systems go one step further to incorporate
new knowledge that has been learned about the visualizations
and data preferences. Such systems may employ machine
learning techniques to assign weights based on properties like
the underlying chart and/or data types, or to create a global
ranking of visualization designs. While details of the underlying
data set may surface during this process, the data itself is still
not considered directly.

Insight-centric systems aim to incorporate details of the
specific underlying data that will be used to create the
visualizations. Whereas the other classes of visualization
recommendation systems are largely agnostic to the underlying
data values, insight-centric systems incorporate the specific
data properties as an essential feature of the recommendation
process. Such systems can therefore highlight not only the
most relevant visualizations, but also summarize the most
important classes of insight-types to provide a high-level
overview of the shape of the underlying data. We provide
additional details about the exact problem formulation for
insight-centric recommendation systems in the next section.



TABLE I
WE SUMMARIZE THE INSIGHT-TYPES, AND CORRESPONDING ATTRIBUTE TYPE COMBINATIONS AND CHART TYPES SUPPORTED FOR EACH INSIGHT. WE
ALSO SUMMARIZE THE TECHNIQUES USED IN THE PROPOSED FRAMEWORK FOR AUTOMATICALLY REVEALING THESE INSIGHTS, AND COLOR EACH ONE

BASED ON THE APPROACH USED FOR DISCOVERING THE INSIGHTS (information theoretic, statistical, supervised learning, unsupervised learning).
N=NUMERICAL, C=CATEGORICAL, T =TIME.

Insight Type Attribute Type 
Combinations Visualization Type Methods

Timeseries Outliers

N x T timeseries autocorrelation  •  IForest  •  one-class SVM

N x N x T multiline timeseries IForest  •  one-class SVM  •  LOF

Single Variable Outliers

C x N x T bar timeseries temporal entropy  •  IForest  •  one-class SVM

N boxplot z-score  •  IQR  •  DBSCAN  •  LOF  •  one-class SVM

N x C

Two Variable Outliers

C bar entropy

N x N scatterplot LOF • DBSCAN • k-means • IForest • one-class SVM

C x C

N x ... x N

C x N x ... x N

N x T

Multivariate Outliers

stacked bar PMI •  ks-stat  •  IForest  

colored scatterplot CBLOF  •  k-means  •  IForest  •  one-class SVM

stacked bar CBLOF  •  IForest

timeseries autocorrelation

C x N x T

N x N x T

N x N

Timeseries Correlation

stacked bar timeseries temporal entropy

multiline timeseries cross-correlation  •  cosine tdiff  •  Spearman tdiff

scatterplot Pearson correlation  •  PCA  •  decision tree regression

C x C

violin plot logistic regression  •  decision tree classification

stacked bar Theil's U  •  Cramer's V

N x N

N x CNonlinear Correlation

scatter with LOESS decision tree regression

bar decision tree classification  •  logistic regression

C x C

N x N

stacked bar Theil's U  •  Cramer's V

scatterplot Spearman  •  Kendall  •  Goodman-Kruskal's γ

N x N

N x N

N

Rank Correlation

multiline timeseries Granger causality

timeseries augmented Dickey-Fuller

timeseries CH test

N

N

N

timeseries max local differences

timeseries k peaks of support

timeseries augmented Dickey-Fuller

Multivariate Timeseries 
Correlation

Two Variable Correlation

Timeseries Causality

Stability

Seasonality

Spikes

Peaks

Irregularity

C, N histogram unbiased skewSkew

C, N histogram kurtosisHeavy Tails

C, N histogram bimodality coefficientMultimodality

C, N histogram varianceDispursion

C, N pie percent missing vaulesMissing Values

(C, N) x (C, N) pie percent missing vaules per attribute pairJoint Missing Values

IV. PROBLEM FORMULATION

An insight is a new piece of knowledge identified in the data
while performing an analytical task. In other words, an insight
is a property of the data that is unexpected, complex, deep,
or relevant to the analyst, such as a strong linear correlation
between two variables or a set of points that are anomalies with
respect to time. Providing insights is arguably the main goal of
information visualization [14]. However, none of the existing
visualization recommendation systems described in prior work
focus on the recommendation of classes of insight-types or the
individual ranking of visual insights.

Definition 1 (VISUAL INSIGHT RECOMMENDATION).
Let I = {I1, I2, . . . , I|I|} denote the set of insight-types. Given
an arbitrary data set X, we define FIi = {f1, f2, . . .} as
the set of insight discovery methods for insight-type Ii ∈ I
and ρIi(X1,X2, . . .) as the set of insights found for that
insight-type. An insight-centric visualization recommender
system (i) automatically discovers the important insights for
each insight-type Ii ∈ I using many different learning and

statistical models FIi for many different attribute types and
attribute type combinations; (ii) recommends the important top-
r insight-types; (iii) scores and recommends the top-k insights
ρI(X1, . . . ,Xk) for every insight-type Ii ∈ I and attribute
type combination; and (iv) infers an appropriate visualization
for each insight.

Every insight-type Ii ∈ I has a set of attribute type combi-
nations denoted as AI . For each attribute type combination
A ∈ AI , we have a set of insight discovery methods FI as
shown in Table I. For example, the “Two Variable Outliers”
insight-type has two different attribute type combinations
AI = {N ×N,C × C}; each attribute type combination then
supports several methods for detecting insights (e.g., for N×N ,
the supported methods include DBScan and IForest, among
others). Furthermore, we also recommend many different
visualizations for every insight type I ∈ I , as shown in Table I.



V. VISUAL INSIGHT RECOMMENDATION

Given the problem formulation from Sec. IV, we now describe
our proposed approach for visual insight recommendation.

A. Auto-Insight Discovery

The first step in the recommendation process is to automatically
detect insights in an arbitrary data set. To effectively identify
insights for any input data set, we employ a variety of different
insight discovery methods as described next.

1) Multiple Insight Discovery Methods: Given an arbitrary
data set, each insight-type (and attribute combination) has many
potential algorithms and the best algorithm depends on the
data and its characteristics [48], [49]. The above is due to the
no-free lunch theorems by Wolpert et al. [48], [49], which
essentially means that any two optimization algorithms are
equivalent when averaged across all possible problems (data
sets) [50], [51]. Since the “best” insight discovery method
depends on the data and its characteristics [52], we instead
use multiple insight discovery methods for each insight-type
and attribute combination to ensure that our approach can find
important insights, regardless of the user selected data set.

2) Learning-based Insight Discovery Methods: In addition
to the simple heuristic-based insight methods used in Foresight
(e.g., IQR), we use learning-based insight methods for many
of the different insight-types as shown in Table I. Many of the
machine learning methods in this framework can be configured
with different kernel and distance functions such as One-
Class SVM, Kernel PCA, k-means, among many others. These
methods also have many other real-valued hyperparameters
that can be optimized. Therefore, we sample a few models
from each method to use in the ranking of the different insights
(e.g., One-Class {linear,RBF, polynomial}-SVM).

3) Insight-Type Granularity: As the number of different
insight-types in visual insight recommendation systems be-
comes large, the insight-type ranking and recommendation that
this work proposes becomes even more important. Intuitively,
the more insight-types the visual insight recommendation
system incorporates, the higher the probability of finding
relevant insights that are important to the user and data set of
interest. SpotLight also detects insights at a fine-granularity
that are more meaningful and intuitive to the user. For instance,
instead of considering a general insight-type called “outliers” as
done in prior work [35], we distinguish outliers into meaningful
subcategories, such as time-series outliers, multivariate outliers,
single variable outliers, and so on (Table I).

4) Multi-Attribute Types and Combinations: For each
insight-type shown in Table I, we consider multiple attribute
combinations and many different attribute types. The expres-
siveness of this approach contrasts with prior work [35], which
only considers a single attribute combination and only supports
numerical attributes.

5) Multi-faceted Insight Types: Many insight-types support
different attribute combinations (N × C, C × C), as well as
combinations consisting of a different number of attributes,
e.g., N ×N and N ×N ×C. One such example in Table I is
timeseries outliers.

6) Methods: In this work, we use many different methods
to automatically discover insights for each insight-type. We
provide a summary of these methods in Table I. We categorize
these methods into four main classes, including (i) information
theoretic, (ii) statistical, (iii) unsupervised learning, and
(iv) supervised learning. We adapt and leverage many of these
methods in nonstandard ways for learning and automatically
discovering insights from a wide range of different insight-types.
To do this, we often have to first derive a different representation
of the data, modify or change entirely the scoring function,
etc. As such, we focus our discussion on the fundamentally
different and novel ways these techniques were used in our
insight recommendation framework. Importantly, the proposed
insight recommendation framework is flexible as the insight
discovery methods used for each insight-type and attribute type
combination are completely interchangeable. Furthermore, this
approach can generalize to any arbitrary set of methods that
users may want to employ in the future.

B. Insight Ranking

Once insights have been discovered, the next step is to create
a ranking of insights to surface for the user. Previous work
used a single heuristic for each insight-type and therefore
did not require any scoring or ranking metric. In contrast,
our approach automatically reveals insights of a specific type
using multiple learning-based methods, which makes scoring
and ranking the insights non-trivial. Ranking becomes even
more complex given that the insights from an insight-type can
leverage a different number of attributes of different types and
combinations as shown in Table I, which makes comparing
and scoring individual insights difficult.

Given an insight-type I ∈ I and set of methods FI for
that insight type, the goal is to assign a score to each insight
detected using FI . Suppose pI = |FI |, then we may have pI
scores for every insight detected for insight type I ∈ I. We
define the utility function ϕ as:

ϕ : X × FI → R (1)

where X is the space of attribute combinations used by the
methods FI for insight-type I ∈ I . We derive a final score as:

ϕ(Xk,FI) =
1

Z

∑
fi∈FI

n∑
j=1

[
g
(
fi(Xk,Λi)

)]
j

(2)

where Xk is an arbitrary attribute matrix consisting of one
or more attributes from X ∈ Rn×m. In other words, Xk is
an attribute combination matrix that may consist of one or
more attributes. Further,

[
g
(
fi(Xk)

)]
j

is the jth value from
s = g

(
fi(Xk)

)
∈ Rn. We define g : R → [0, 1] and Λi as the

set of hyperparameters for the learning-based insight method
fi ∈ FI . Suppose fi ∈ FI is one-class SVM, then Λi may
include a kernel function K such as the non-linear RBF kernel
or polynomial kernel along with other hyperparameters, such as
γ or the degree of the polynomial kernel. In Eq. 2, Z = |FI |n.

Our formulation in Eq. 2 assumed that the output of each
insight method was the same. However, in general, some insight



Fig. 3. Overview of the proposed class of Insight-centric Visualization Recommendation Systems.

methods may return scores for only the most relevant data
points (as opposed to all n data points), or even a single score
for the attribute combination. Thus, we can rewrite Eq. 2 as

ϕ(Xk,FI) =
1

|FI |
∑

fi∈FI

1

ni

ni∑
j=1

[
g
(
fi(Xk,Λi)

)]
j

(3)

where ni denotes the number of scores returned by fi: Eq. 3
assigns an insight score to the attribute combination Xk for
insight type I ∈ C using the methods FI . Now, we obtain a
ranking of the insights within the insight type I ∈ C as follows:

ρ
I

(
{X1, . . . ,Xk, . . .}

)
= arg sort

k
ϕ(Xk,FI) (4)

There are a number of novel aspects in the above formulation
for ranking insights within an insight-type. More specifically,
we are the first to (i) leverage learning-based insight methods,
(ii) use more than a single method per insight, and (iii)
propose and require an insight scoring and ranking function.
Moreover, we describe a general mathematical framework for
recommending visual insights.

Instead of using the normalized scores from every method
to derive a final score for a given insight-type and attribute
combination, we derive a final score for each data point (row
of Xk) based on the rankings given by each method. Using the
ranks as opposed to the weights can help avoid biasing certain
methods depending on the distribution of inferred weights. For
a single j and attribute combination Xk, we can generate a
rank-based score as follows:

Rj(Xk,FI) =
1

|FI |
∑

fi∈FI

πj

(
fi(Xk,Λi)

)
(5)

where πj

(
fi(Xk,Λi)

)
is the position of the jth object in the

ranking obtained from attribute combination Xk with method
fi ∈ FI . Therefore, Rj(Xk,FI) is the average rank of j across
all methods and every method can be seen as having equal
weight. Notice that Eq. 5 gives an overall ranking for each
data point j (row in X) whereas Eq. 4 provides a ranking of
the overall attribute combinations {X1, . . . ,Xk, . . .} across all
n data points and |FI | methods.

The rank-based score given by Eq. 5 can be used to
appropriately annotate the visualizations for better visual insight

recommendation. As an example, suppose we use the set of two
variable outlier methods and use the methods as an ensemble
to obtain an overall ranking of the data points by how much
of an outlier each point appears to be. This ensemble ranking
can be accomplished using the average rank of the data points
given by the set of methods.

Note that if g is set to the min-max norm for each insight-
type and attribute type combination, then by definition we
are guaranteed to have a diverse ranking of visualizations for
each insight-type. Intuitively, since min-max norm is applied
to each attribute type combination independently, then one of
the insights with that attribute type combination is guaranteed
to score 1. Hence, if there are three attribute type combinations
for a given insight-type, then the first three insights will be of
different attribute type combinations.

1) Space & Scalability: To ensure the approach is space-
efficient and scalable for large datasets with millions or more
data points, we do not store the individual scores of each data
point (for all methods). Notably, we can simply compute the
final score on-the-fly while taking a scan over the (sampled)
attribute values. For large data where even a linear scan over
the data points is considered too costly, we can use sampling
or sketching techniques.

C. Scoring and Ranking Insight Types

The insight-types are scored in a completely automatic and
data-driven fashion. In particular, the ranking of the different
insight-types (rows of insights and their visualizations) is driven
by the amount of information captured by each insight-type
across all the discovery methods. Let QI = {X1, . . . ,Xk, . . .}
denote the set of potential insights being scored for insight
type I ∈ I, then

Ψ(I) =
1

|QI |
∑

Xk∈QI

ϕ(Xk,FI) (6)

where Ψ(I) is the overall score assigned to insight type I ∈ I
for the dataset as a whole. As defined by Eq. 6, if an insight-type
I ∈ I receives a relatively high score Ψ(I), then there must be
many important and highly weighted insights of that insight-
type. The overall insight-type score is based on the insights
discovered in the specific data set and their corresponding



scores previously derived in Section V-B. Using Eq. 6, we
derive a global ranking of the insight types I by simply sorting
them based on their overall scores:

ρI
(
{I1, I2, . . . , I|I|}

)
= arg sort

I∈I
Ψ(I) (7)

The insight-types are displayed to the user according to the
ranking from Eq. 7. This ranking enables the user to quickly
find the most relevant insights for the data set of interest.
Furthermore, the overall insight-type ranking for a data set can
be used to better understand the data quickly, e.g., if the most
important insight-types for a specific data set are all related to
time-series (such as time-series outliers, time-series causality,
and so on), then the user immediately knows that the temporal
dimension in the data is important.

D. Additional Features of SpotLight

We now discuss a few other important components.
1) Multiple Visualizations per Insight-Type: The next step is

to derive weights (either learned or rule-based) for the potential
visualizations for each of the top-k insights of a specific insight-
type learned by our proposed approach. For each insight, we
derive weights for the potential visualizations and select the
best visualization (rank-1). With this approach, notice that we
could easily select and display more than one visualization
for a given insight. This option may be preferable if there
is an insight that is significantly more important than others.
In this case, showing several different visualizations for the
same insight may be more useful to the user than showing less
relevant insights or visualizations.

2) Data Complexity: Given an insight from an arbitrary
insight-type, we add a penalty to overly complex and data-
intensive insights. For instance, an insight involving time, a
categorical attribute, and two numerical attributes will obviously
be more difficult for a user to understand and visualize than
one involving only two attributes.

3) Human-in-the-Loop: The system also leverages intuitive
UI features that allow the user to specify attributes of interest
and perform many other types of interactive insight queries as
well. Importantly, the recommended insight-types and visual
insights within each type are automatically adapted based on
the user input such as the attributes of interest.

VI. EVALUATION

To understand the efficacy, accuracy, and generalizability of the
proposed class of insight-centric recommendation systems, we
conducted a user study of the system with twelve participants.
The user study is designed to answer the following questions:
RQ1: Does SpotLight help users generate hypotheses, find

insights, and understand the data better?
RQ2: Are the supported insight-types and attribute types

useful, diverse, and comprehensive?
RQ3: Are the recommended rankings (of both insight-types

and insights) useful and do they provide diversity?
RQ4: Are the visualizations used for the recommended in-

sights useful, diverse, aesthetic, and easy-to-understand?

RQ5: Does the UI allow users to find the most interesting
insights and does it support different workflows for EDA?

A. Method

Participants. Participants were recruited by word-of-mouth
and internal mailing lists at a software company and two
universities. In total, there were 12 participants aged 25–51
years (mean = 34). Participants consisted of two graduate
students, five researchers/data scientists, four technical
professionals, and one visualization designer. Participants had
3–20 years of data analysis experience and 1–20 years visual
analytics experience (mean = 8 and 7 respectively). Two
participants were female and ten were male.

Procedure. Sessions were conducted remotely, through
video conference and screenshare, with two researchers
(one administered, one took notes). Participants were first
trained on SpotLight’s UI and features using a training data
set. Participants were then asked to perform a free-form
exploration of two data sets from the UCI ML Repository:
Weather data and Wholesale customer profile data. No
participant was familiar with either data set ahead of time
and the order of the data sets was counterbalanced between
participants to avoid fatigue and learning effects. During
exploration, participants were encouraged to think-aloud and
bookmark interesting charts that helped them understand
the data. After exploring the data, participants were asked
to verbally present their findings. Afterwards, participants
completed a post-questionnaire with twenty-nine 7-point Likert
questions and three questions about the usability and utility
of SpotLight. The bookmarked insights were also logged for
each participant. Participants were required to use a desktop
or laptop computer instead of mobile or tablet devices, for a
consistent experience. Each session lasted 60–75 minutes.

Data sets. The Weather data set consisted of weather
patterns for two US cities, Seattle and New York, over four
years (2014–2017). Each row represented one day for each
city, with measurements for: precipitation (in), wind (mph),
minimum and maximum recorded temperatures (C). Lastly,
there was a categorical variable indicating the type of weather
seen on that day, such as sunny, fog, drizzle, rain, or snow.
The Wholesale data set consisted of 440 businesses’ annual
spending at a wholesale company. Each row represented one
customer, with a categorical variable representing the type
of business (hospitality or retail) and six numerical values
representing annual spending broken down by department:
fresh, frozen, grocery, detergent and paper, dairy, and deli.

Analysis. Sessions were analyzed by two researchers to observe
participants’ patterns in workflow and their comments about
their use and understanding of the system. The insights users
bookmarked were saved and analyzed based on frequency
and ranking in the recommendations. In particular, since the
insights within every insight-type are ordered automatically
by SpotLight, we compared the ranking of insights given



by SpotLight to the “ground-truth” ranking given by the
insights users bookmarked. We used the bookmarked insights
to quantitatively evaluate the insight-type ranking derived by
SpotLight compared to the ranking of insight-types given by
the bookmarked insights. Finally, the post-questionnaire Likert
responses were analyzed with descriptive statistics and the
open-ended responses were thematically coded.

B. System Usage

To gather preconceptions about the data and to confirm their
understanding of the data sets, we asked participants what they
expected or would find interesting to see in each of the data
sets. Participants tended to have more hypotheses about the
weather data set than the wholesale data set because it was
more natural to have experience with weather. For example,
nine participants hypothesized city-based comparisons (e.g.,
“Seattle is rainier than New York”) and half of the participants
were interested in variable-based correlations (e.g., whether
temperature and precipitation have a relationship). Additionally,
the types of hypotheses people had were different based on
the data set. Wholesale hypotheses were less focused on
comparisons and were more related to the relationships between
different spending variables in general, though some did also
focus on comparing customer types (e.g., hospitality vs. retail).

The hypotheses also impacted participants’ workflow when
using the system. Most participants (10/12) followed a general
exploratory workflow: they began by reviewing the variables
in the data set using the variable search bar then explored the
recommended insights row-by-row. Most opted to explore the
results from top to bottom, citing trust in the recommendations:

“Since the system suggested this as the most insightful, I’ll
go ahead and start with that” (P1). After reviewing the top
recommendations and generating additional hypotheses, some
participants filtered the results based on specific variables they
were interested in analyzing. Conversely, many participants
(5/12) with clear hypotheses began their analysis by first
filtering by the variables relevant to their ideas to find insights
that confirmed or denied their hypotheses. Two participants
(P1, P5) systematically searched for variables one-by-one to
analyze subgroups of the results and to understand the data set
better; for example, one participant noted that ”Maybe I need
to first look at one variable at a time, so I can understand the
dataset first. It’s a lot cleaner and easier to see initially with
one variable” (P1).

C. Insight and Insight-type Results

We analyzed the rank of users’ bookmarked insights to
quantitatively evaluate the effectiveness of the insight and
insight-type rankings of our proposed approach.

Insight Ranking. Across all insight-types, 68% (weather) and
61% (customer wholesale) of the insights bookmarked by the
users came from the top-5 insights recommended by SpotLight
in their respective insight-type rows. This finding indicates
that the ranking of insights (within each insight-type) from
SpotLight were indeed useful and validates the effectiveness
of the ranking of insights and the top-recommended insights

within each insight-type given by the proposed approach.
Considering the top-10 insights recommended by SpotLight
(as opposed to only the top-5), we find that among all the
bookmarked insights from the participants, 91% (weather)
and 86% (customer wholesale) of them can be found in the
top-10 ranked insights from SpotLight. This observation is
important, since there is clearly an exponential amount of
visual insights that can be recommended for every different
insight-type, and the above finding demonstrates that SpotLight
is able to accurately score and recommend the best insights
with the highest quality/relevance from each insight-type. In
addition, users bookmarked multiple chart-types per insight-
type, indicating that the diversity of charts was useful. This
observation is particularly important since the proposed insight
ranking function biased charts of different types towards the top
of the ranking. We posit that this behavior was welcomed by the
users for many reasons. For instance, if they do not understand
certain chart types, then they can immediately see the variety of
different charts used for the insight-type. Furthermore, if users
found a particular chart type useful for a given insight-type,
they could quickly find the insights that had such a chart.

Insight-Types. We leverage the insights bookmarked by the
users to (i) investigate the utility of the insight-types, and (ii)
quantitatively evaluate the insight-type ranking. We begin by
first evaluating whether the automatic insight-type ranking
proposed in this work is important or not. To do this,
we compare the top-5 insight-types ranked by the number
of insights bookmarked from each insight-type across both
weather and customer wholesale data. We use Kendall’s τ rank
correlation to compare the top-5 insight-types from either data
set. Strikingly, we find the ranking of the top-5 insight-types
for weather data are significantly different at p-val=0.05 from
those preferred by participants in the customer wholesale data.
Hence, ranking the insight-types is indeed useful, since the
insight-types for either data set were ranked differently by the
users. In other words, if the ranking of insight-types did not
matter, then the ranking should not depend on the data set
of interest, and thus be the same. This result indicates the
importance of ranking the insight-types differently depending
on the user-selected data set, the important insights discovered
in the data, as well as the behavior and preferences of the
user. In addition, we found that users bookmarked insights
from every insight-type but one (heavy tails). This result holds
across both data sets and indicates that nearly all insight-types
proposed in SpotLight are useful.

Insight-Type Ranking. To quantitatively evaluate the effective-
ness of the insight-type ranking, we compare the ranking
of insight-types from SpotLight to the ranking given by
the participants (based on their bookmarked insights) for
the wholesale data. The ranking of insight-types from the
participants are used as ground-truth. To test whether the
insight-type ranking given by SpotLight is similar to the ranking
given by the participants in the study, we use Kendall’s τ
rank correlation. Importantly, we find the insight-type ranking
from SpotLight to be significantly correlated with the ground-
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Fig. 4. Overall ratings of SpotLight on a 7-point Likert scale, with one
standard deviation shown in gray.

truth ranking from the users in the study (with a p-val<0.01).
Notably, the rank correlation coefficient τ = 0.87 indicates that
the two rankings are extremely correlated with a p-value of
0.0008. This result quantitatively demonstrates the effectiveness
of the insight-type ranking as the ranking given by SpotLight
is correlated significantly with the user-preferred ranking.

D. Participant Feedback

Overall feedback based on the questions is provided in Fig. 4.
Participants were generally positive about the system and
appreciated that it was comprehensive and automated when
recommending insights. Even experts appreciated the ease-
of-use, noting that “I do a lot of this by hand using Python
so I definitely can see value in some immediate analysis. I
end up generating similar graphs but each takes time (and
learning in Python)” (P3) and “I like that the visualizations
are automated for me, so it’s great to just bookmark and view
them” (P1). Overall, participants felt the system would be
useful (mean = 5.9) and usable for improving participants’
understanding of the data (mean = 6.3). P5 noted that it was

“a good way to start my orientation in a dataset”. P3 explained
how the system provided “immediate insights” and could “save
a lot of time exploring the dataset to understand it”.

Participants were mixed about the comprehensiveness of
the insight-types (mean = 4.5). Most were able to find insights
from the data based on the available insight-types, especially
for insights that they would not have otherwise found. P2 noted
that the system included insight-types that they would not think

to use: “I wouldn’t think to correlate the numerical values
with each other off the top of my head, but that makes sense”.
P7 similarly explained that “a number of analyses listed were
very useful in parsing out trends about the overall data”. Some
participants expressed interest in insights related to specific
slices of the data; P2 suggested adding “comparisons between
the categorical variables” and P8 expressed a need for filtering
by categorical values: “I don’t know how I could select data
from only variable (like city) and then see the results”.

The visualizations were rated highly (mean = 5.5), especially
with the inclusion of annotations, which “help a lot to explain
[the insights]” (P2). Many participants commented about
the diversity of chart types, citing this feature as a major
strength of the system; P11 explained that “The system provide
more advanced visualizations that other tools provide” and P7
noted that “Some of the graphs were very visually appealing
and indicated trends across different categories very clearly.
Definitely worth using this tool for those graphs alone”.

The most common suggestion for improvement was to in-
clude more descriptive statistics and explanation of the insights
used. Participants felt that the use of insight-type were too
technical for people without significant statistics background:

“Explanations about visualizations or statistical analysis would
help me better explain what each chart is trying to tell me”
(P3). Participants also suggested common improvements on
the visualizations themselves, such as enforcing consistency
between visualizations (e.g., color), providing interactions such
as zooming, and details-on-demand to allow for analysis beyond
EDA. These features in particular would help users in the next
step of their investigative analysis, especially as they generate
additional hypotheses when comparing between multiple charts.
Lastly, many participants (6/12) wanted more control over the
visualizations (e.g., customizing the binning and configuring
chart variables and axes).

VII. CONCLUSION

In this work, we proposed a visual insight recommendation
system that makes it easy and fast for users to find interesting
insights in their data visually. Given an arbitrary data set,
we first recommend the top-k insights and accompanying
visualizations for each insight-type (e.g., time-series outliers).
The visual insights for each insight-type are ranked and
displayed to the user in a single row. More importantly,
to enable the user to find interesting insights quickly, we
also score and rank the insight-types where each insight-type
corresponds to a row of visual insights. By recommending the
top-r insight-types (rows of visual insights), users can easily
identify important and relevant insights in their data quickly.
Finally, future work will investigate personalizing the insight-
type ranking and ranking of insights within each insight-type
based on user behavior logs (e.g., bookmarked insights, the
insight-types of those bookmarked insights, insights a user
clicked on, and so on).
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