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Abstract—Modern organizations amass their datasets into
centralized repositories called data lakes, affording analytics as
needed. The resultant scale and complexity of these data lakes,
however, can make data navigation and monitoring challenging
for users. We present DataCockpit, a Python toolkit that leverages
datasets, usage logs, and associated meta-data to provision data
usage and quality characteristics. DataCockpit computes these
characteristics for each attribute (e.g., number of times it was
queried for subsequent use in downstream applications) and
record (e.g., number of non-missing, valid values) and aggregates
them at the level of datasets. We develop a visual monitoring tool,
powered by DataCockpit, and demonstrate how it can assist data
/ system administrators as well as end-users to effectively navigate
and monitor a data lake. DataCockpit and the monitoring tool
are available as open source software for developers to build
custom monitoring applications on top of data lakes.

Index Terms—data usage, data quality, monitoring, navigation,
visualization, toolkit

I. INTRODUCTION AND BACKGROUND

Modern organizations amass their data into centralized repos-
itories called data lakes enabling users to perform analytics
as needed [1]. Unfortunately, the inherent data overload due
to this “load-first” philosophy poses several challenges in data
navigation, discovery, and monitoring [2]–[5]. No single user
knows about all the datasets, let alone what each one contains.
This unfamiliarity leads to adverse consequences such as
difficulties faced by users in discovering relevant attributes
for data preparation, challenges faced by data administrators
while monitoring the health and data governance policies of
the data lake, and so on.

Prior work has utilized raw data [2], [6], meta-data [7],
[8], and query-driven techniques [9]–[11] to support such

data navigation and monitoring tasks. Existing proprietary
software (e.g., Monte Carlo [12], Bigeye [13], Datafold [14])
as well as open-source tools (e.g. Elementary-Data [15],
SQLLineage [16]) provide data profile, quality, and lineage
information for data observability, monitoring, and pipeline
optimization purposes. However, an important reason for the
existence of data lakes is the access they provide to a large
variety of datasets, an area where these tools fall short. These
tools predominantly compute characteristics of the data, e.g.,
their quality 1, but not their usage, defined as the historical
utilization characteristics of data across other users [17]. We
address this ‘gap’ in this work.

Any single user can benefit by learning about the usage of
different data (e.g., table attributes and records) across other
users. Together with quality, usage information improves effi-
ciency and effectiveness of downstream tasks. These benefits
are evidenced in a rigorous user study of 36 users working
with a visual data preparation and analysis tool, DataPilot [17].
DataPilot provisioned quality and usage information to users
and was shown to help them select small, effective subsets
from large, unfamiliar, tabular datasets.

In this paper, we present DataCockpit, a Python toolkit
that utilizes quality and usage information to help users navi-
gate and monitor data lakes. DataCockpit extends DataPilot’s
functionalities to a data lake comprising multiple relational
datasets [18] and a logging framework [19]. While data lakes
comprise heterogeneous (e.g., un-, semi-, structured) data, our

1Quality is defined as the validity and appropriateness of data required to
perform certain analytics [17].
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current focus is on one with relational databases with future
plans to expand to other data sources.

DataCockpit computes these characteristics for each at-
tribute (e.g., number of times the attribute was queried for sub-
sequent use in downstream applications) and record (e.g., num-
ber of non-missing values, valid values) and assigns scores out
of 100, that are then aggregated to a dataset-level. DataCockpit
provides a customizable and extensible Python API to com-
pute, persist, and query usage metrics such as who used which
dataset, how, when, and why; and quality metrics namely
completeness, correctness, objectivity [17], [20]2, uniqueness
(number of distinct values), and freshness (timeliness of data
for the task at hand) [20]. Unlike existing tools, DataCockpit
provisions both usage and quality information across multiple
granularities of data (i.e. attributes, records, databases).

Using DataCockpit, we developed a visual monitoring tool
that presents usage and quality information with interactive
affordances for data lake navigation and monitoring. We
demonstrate its utility through multiple usage scenarios across
different user groups: (a) data / system administrators to
monitor the health of a data lake, (b) developers to build
customized database applications, and (c) new or experienced
end-users to flatten their learning curve or improve effective-
ness while navigating a data lake, respectively. DataCockpit
and the tool are released as open-source software at https:
//github.com/datacockpit-org.

The primary contributions of this work include:
1) DataCockpit, an open-source Python toolkit that pro-

vides usage and quality information from data lakes.
2) a data monitoring tool, powered by DataCockpit, to help

users navigate and monitor data lakes.
3) use cases of this tool across multiple stakeholder types.

II. DATACOCKPIT

We conducted a design study with fourteen experienced pro-
fessionals (10 male, 4 female) from the software industry
who performed data preparation and analysis for myriad tasks.
We conducted semi-structured interviews to first understand
their tasks and challenges and then led brainstorming and
feedback sessions centered around the design and development
of DataCockpit and the companion monitoring tool. Next, we
describe how DataCockpit models these usage and quality
information along with its architecture and API.

A. Modeling Data Usage Information

We posit that data lake usage logs are similar to database
management logs (e.g., MySQL’s Query Log [21]), comprising

id, SQL query, db (database), timestamp, user, application.

id query db timestamp user app

1 SELECT prod.name, ... org 1683743727 nroy dash
2 INSERT INTO prod ... org 1684901000 rbob cli
3 UPDATE user SET role ... org 1685329543 sguo hr-app

2completeness: % of non-missing values, correctness: % of correct values,
objectivity: the amount (in %) of lack of distortion in the data distribution.

We iterate through each usage log, parse the SQL
query [22], [23], and extract the datasets (e.g., “product”
table), attributes (e.g., “name” column) and associated SQL
keywords (e.g., SELECT). We also extract filter conditions
(specified via WHERE and HAVING clauses) to determine
how frequently certain data records (rows) are accessed, iden-
tifying data ‘hot-spots’ (most-) and ‘blind-spots’ (least-used).
for log in usage logs: # iterate over every usage log
parsed sql = SQLParser(log[‘‘query’’]) # parse the SQL query
datasets = # from, join, updated (including those in subqueries)
attributes = # select, update, where, group by, order by, having
records = # exec query with(out) where, having, mark result set.
user = log[‘‘user’’] # the user executing the query
application = log[‘‘app’’] # the originating application
timestamp = log[‘‘timestamp’’] # the query execution timestamp

This extracted information is then stored in new tables that
end-users can query and get answers to questions such as:
Which attributes (or datasets) are accessed most frequently?
Are they SELECTed or UPDATEd, or both? Which user(s)
access these and for which application(s)? When?

id db data attribute keyword timestamp user app

1 org prod name SELECT 1683743727 nroy dash
2 org prod - INSERT 1684901000 rbob cli
3 org user role UPDATE 1685329543 sguo hr-app

attribute t query count u user count u app count last used ...

name 825 23 4 1683743727 ...
role 2 1 1 1685329543 ...

We precompute certain usage metrics for attributes
(and records), e.g., t(otal) query count, u(nique) user count,
u app count, last used. If the data lake ingests data in
batches, we can also aggregate usage across specific temporal
periods (e.g., monthly t query count).

attribute period t query count u user count u app count ...

name 2023-05 43 5 5 ...
role 2023-05 1 5 5 ...

Scoring, Aggregation, and Customization. Each usage met-
ric is first normalized to 0–100 for all attributes and records;
this is its score. Then, the overall score is derived as the max
of individual these scores. We do not use the mean because
of variances in how the same data might be used across
apps (e.g., regular versus one-off use) and low scores could
potentially demotivate the user. These overall scores (E1...n

for ‘n’ attributes and records) are aggregated to higher gran-
ularities of data (e.g., dataset-level) using a weighted average
(default weights = 1) as not all data are equally important, e.g,
t query count is more important than u user count.

AGGRSCORE =
w1E1 + w2E2 + . . .+ wnEn

w1 + w2 + . . .+ wn
(1)

B. Modeling Data Quality Information

Complementing usage, we operationalize the data quality met-
rics – completeness, correctness, objectivity (from [17]) and
include two additional metrics: uniqueness and freshness [20].

Completeness is the percentage of non-missing values, e.g.,
if 10 of 50 values are nulls or empty strings, then its
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completeness will be 100*(50-10)/50 = 80%. This metric
can be computed for both attributes and records. We allow
users to specify custom missingness criteria, e.g., ASCII-
space (“ ”) or NaN. With completeness, users can detect
sparse features (attributes) that may otherwise hinder an ML
algorithm’s ability to make accurate predictions; and identify
sparse records (rows) for examination, when needed.

Attribute Completeness

/* Compute percent of Non-Null values for all N attributes
* where attri means the ith attribute for i ∈ 1...N. */

SELECT CAST(COUNT(attr1) AS FLOAT) * 100 /
CAST (COUNT(*) AS FLOAT) AS ‘‘attr1’’,

CAST(COUNT(attr2) AS FLOAT) * 100 /
CAST (COUNT(*) AS FLOAT) AS ‘‘attr2’’,

...,
CAST(COUNT(attrN ) AS FLOAT) * 100 /

CAST (COUNT(*) AS FLOAT) AS ‘‘attrN ’’
FROM dataset;

Record Completeness

/* Compute the percent of Non-Null values for all dataset records
* where attri means ith attribute where i ∈ 1...N. */

SELECT PrimaryKey, (CAST(
(CASE WHEN attr1 IS NULL THEN 0 ELSE 1 END) +
(CASE WHEN attr2 IS NULL THEN 0 ELSE 1 END) +
... +
(CASE WHEN attrN IS NULL THEN 0 ELSE 1 END) AS

FLOAT) * 100 / N ) AS ‘‘record completeness’’
FROM dataset;

Correctness is the percentage of correct values based on pre-defined
constraints and is computed for both attributes and records, for
example, if 5 of 50 values for an attribute are incorrect, then its
correctness is 100*(50-5)/50 = 90%. As correctness is subjective and
context-dependent, we allow users to specify their own criteria and
map them to SQL constraints using relations (>,<,=), range (BE-
TWEEN), pattern matching (LIKE), and membership (IN) operators.
Correctness allows users to assess accuracies of individual attributes,
and act on incorrect information detected in records.

Attribute Correctness
/* Compute the percent of correct values for all N attributes
* where attri means ith attribute for i ∈ 1...N. */

SELECT
CAST(100 * CAST(SUM(CASE WHEN Age BETWEEN 0 AND 150

THEN 1 ELSE 0 END) AS FLOAT) / COUNT(Age) AS FLOAT),
CAST(100 * CAST(SUM(CASE WHEN Country IN (‘CA’,‘US’)

THEN 1 ELSE 0 END) AS FLOAT) / COUNT(Country) AS FLOAT),
...,

CAST(100 * CAST(SUM(CASE WHEN attrN satisfies a condition
THEN 1 ELSE 0 END) AS FLOAT) / COUNT(attrN ) AS FLOAT)

FROM dataset;

Record Correctness
/* Compute the percent of correct values for all dataset records
* where attri means ith attribute where i ∈ 1...N. */

SELECT
CAST(

(CAST(100 * CAST(
SUM(CASE WHEN Age BETWEEN 0 AND 150
THEN 1 ELSE 0 END) AS FLOAT) / COUNT(Age)

AS FLOAT) +
CAST(100 * CAST(

SUM(CASE WHEN Email LIKE ’% @ %. %’
THEN 1 ELSE 0 END) AS FLOAT) / COUNT(Email)

AS FLOAT) +
...)

/ N AS FLOAT) AS ‘‘record correctness’’
FROM dataset;

Objectivity is the extent to which values conform to a pre-specified
or target distribution, e.g., if the Gender attribute has 105 males
and 45 females, against expectations of a more equal gender dis-
tribution, then it is evidently skewed towards males and hence not
objective. We approached this problem in two ways: (1) we use
SQL to calculate percentage counts of specific attribute categories
(e.g., Gender=“Male”) and then compare them against user-defined
rules (e.g., percentage count of males should not be >60); this
approach allows us to classify specific attributes as objective or not,
assigning a dichotomous score of 0 or 100. (2) Alternatively, we
calculate the respective counts across all attribute categories (via
GROUP BY, COUNT) and then compute the Attribute Distribution
(AD) metric as suggested by Wall et al. [24] (used in [25], [26]).
AD quantifies the deviation between the observed and the target
distributions along a scale from 0 (low, objective) to 1 (high deviation,
unobjective). Objectivity is inapplicable at a record-level since each
record corresponds to values across different attributes that are not
comparable with each other.

Attribute Objectivity
/* Compute if values for attributes are objective (100=Yes, 0=No)
* where attri means ith attribute for i ∈ 1...N. */

SELECT CAST(100 * (CASE WHEN
(SELECT 100 * CAST(COUNT(Gender) AS float) /

(SELECT CAST(COUNT(Gender) AS float) FROM dataset)
FROM dataset
WHERE Gender = ‘‘Male’’) > 60 /* where 60 = some threshold */

THEN 0 ELSE 1 END) AS FLOAT) AS ‘‘Is Gender Objective’’, ...,
/* compare other attri distributions with a target or baseline */
FROM dataset;

Uniqueness is calculated as the number of distinct values for both
attributes and records. We compute this metric using SQL (for
attributes) as well as Python (for records). With uniqueness, users
can determine an attribute’s entropy, i.e., the level of information
contained in a value when considering all possible values; and assess
the amount of duplicate values in each record (e.g., “contact no” and
“phone no” have the same values), and assess schema effectiveness.

Attribute Uniqueness
/* Compute number of unique values for all N attributes.
* where attri means ith attribute where i ∈ 1...N */

SELECT COUNT(DISTINCT attr1) AS ‘‘attr1’’,
...,
COUNT(DISTINCT attrN ) AS ‘‘attrN ’’

FROM dataset;

Freshness is defined as the extent to which data are sufficiently up-
to-date for the task at hand [20]. By default, we calculate it as the
complement of the percentage difference (e.g., 50%) between the
number of time units elapsed since the data record was ingested (e.g.,
fifteen days) and the end-user specified threshold for freshness (e.g.,
thirty days). Like objectivity, freshness scores can be dichotomous
(100 or 0), based on the difference falling either within or outside
the threshold. Note that DataCockpit currently supports freshness
at a record-level only; attribute-level freshness requires tracking the
schema (e.g., ALTER table operations), which is future work.

Record Freshness
/* Compute freshness of each record where ingestionDate is when
* the record is inserted; freshnessThreshold is the unit of freshness
* (e.g., 30 days); referenceDate is compared with ingestionDate. */

SELECT PrimaryKey,
CASE WHEN DATEDIFF(referenceDate, ingestionDate)
<= freshnessThreshold

THEN 100 /* Within threshold */
ELSE 0 /* Outside threshold */
END

AS ‘‘freshness’’
FROM dataset;



Scoring, Aggregation, and Customization. Like usage, each quality
metric is also scored out of 100 for all attributes and records; because
these are percentage-based by definition, they are already normalized.
An overall quality score is also computed, as a weighted average
of the individual scores (unlike the overall usage score that uses
maximum); the weights default to 1 but can be customized, e.g.,
for “timestamp”, uniqueness may be assigned a smaller weight than
freshness because timestamps will be unique; them being recent or
not is perhaps more important. Lastly, all attribute- and record- level
scores are aggregated to higher granularities of data (e.g., dataset-
level), also using customizable weighted averages.

C. Python Toolkit Architecture and API

DATA LAKE DATACOCKPIT

Usage

Quality

Raw, aggregate usage information
DatabaseDatabaseDatabases

Query logs

Path to query logs
Database connections

Raw, aggregate quality information

Fig. 1: DataCockpit architecture diagram illustrating how it
can be integrated into existing data lakes.

DataCockpit is an open-source Python toolkit to enable developers
to compute, persist, and later access quality and usage information,
and build custom applications for their own data lakes. Given the
path to usage logs and appropriate database connections as input,
DataCockpit computes raw and aggregate quality and usage informa-
tion, and persists it back into the source data lake (Figure 1). The
Python code below shows how to interact with the toolkit.

from datacockpit import DataCockpit
# Setup database connection with SQL engine and log-file CSV
dcp obj = DataCockpit(engines=[array of sqlalchemy engines],

logs paths=[array/of/your/logs/path.csv])
# Compute and persist quality & usage metrics
dcp obj.compute usage(levels=None, metrics=None)
dcp obj.compute quality(levels=None, metrics=None)
# Retrieve computed information for use in downstream apps
usage info = dcp obj.get usage(**kwargs)
quality info = dcp obj.get quality(**kwargs)

First, to connect to the data lake, we create SQLAlchemy3 engines,
one for each relational database. Second, we create an object,
dcp obj, of the DataCockpit class, by passing arrays of these
engines and their corresponding logs path as arguments. In this
example, we both read from and write to the same database, however
in practice, a separate database connection can be provided for writing
the meta-data. logs path points to the location where the historical
usage logs (SQL queries and meta-data such as the querying user
and the timestamp) are saved in a CSV file. The next two state-
ments call methods to compute usage() and compute quality()
with parameters to support different levels (e.g., subset of [“at-
tribute”, “record”, “dataset”, “database”]) and metrics (e.g., subset
of [“correctness”, ..., “freshness”]). These compute *() commands
also persist the computed metrics to a new database for retrieval.
The get usage(**kwargs) and get quality(**kwargs) functions
fetch these persisted metrics for building custom applications, where
**kwargs are optional keyword arguments to seek only a subset of
the computed metrics at specific aggregation levels.

3SQLAlchemy [27] is a popular Object-Relation Mapping (ORM) system
that abstracts the underlying database engine allowing developers to write
database-agnostic code.

III. VISUAL MONITORING TOOL

A. Implementing the User Interface
Figure 2 shows the user interface and it consists of two main tabs.

Data Lake View. This view is the landing page and provides an
overview of a single data lake (e.g., “Asia/Pacific”) configurable via
the dropdown. It includes an interactive table with information on
constituent datasets, e.g., {“Id”, “Name”}. The last two columns
correspond to overall “Quality” and “Usage” scores, heuristically
classified as high ○ (≥90), medium ○ (≥67 but <90), and low ○,
using the same cutoffs as DataPilot [17] 4. Users can utilize this
information along with search, filter, and pagination interaction
affordances to (1) navigate: strategically explore the datasets in the
data lake based on their quality and/or usage (not by their name
and/or create/update timestamps), (2) discover: find high quality, high
usage, relevant datasets for a downstream application, (3) monitor
the ‘health’ of the data lake, and (4) housekeep: find low quality, low
usage irrelevant datasets for archival. Clicking a table row presents
additional details about the corresponding dataset in the Dataset View.

Dataset View. The Overview and Preview (a) views present factual
information for the selected dataset, as in the Data Lake View, along
with five sample records (as a dataset preview).

The Quality and Usage (b) views visualize the computed quality
and usage scores as colored glyphs: high ○ (≥90), medium ○
(≥67 but <90), and low ○. For example, Figure 2 shows that the
“Duma” dataset has a correctness of 100% ○ and has been used more
to generate reports (70) ○ and less to build dashboards (65) ○.

The Evolution over Time (c) view visualizes the evolution of
overall usage and quality scores for this dataset over time. These
scores are (re)computed whenever new records (a new batch of data)
are appended to the dataset (even when new datasets are ingested),
and/or on a scheduled (e.g., weekly) basis, helping users monitor the
health of datasets.

The Attribute and Record Explorer (d) view presents quality and
usage information for each attribute in an interactive list or tree
visualization (Figure 2), and record as a tabular visualization. The tree
visualization is useful for hierarchical data schemas (e.g., “placeCon-
text.geo.city”, “placeContext.geo.point.latitude”) and lets users pan,
zoom, expand, and collapse attribute nodes to promote overview first
and details on demand visual exploration [28]. Nodes can be colored
based on the quality or usage scores of the corresponding attributes.
Node label colors correspond to whether an attribute in the mapped
schema is in the dataset (black) or not (gray). Hovering an attribute
node (e.g., “city” in Figure 2) shows corresponding quality and usage
scores in a tooltip. For record-level information, a datatable provides
similar capabilities.

Implementation. We developed this interface using a client-server
architecture where the client-side is written using HTML and
JavaScript; and the server-side uses Python Flask [29]. The client-
side collects and passes parameters (e.g., **kwargs) to the server-side
over HTTP REST. The resultant JSON outputs from server-side are
passed back and parsed in JavaScript to render the user interface: text
and colored glyphs of usage and quality scores, temporal multi-series
line chart, and the interactive tree visualization using D3.js [30].

B. Use Cases Envisioned
Unlike existing tools, DataCockpit provides monitoring capabilities
on top of navigation capabilities, for multiple datasets, to support
data / system administrators and developers. Like existing tools, it
also continues to serve end-users.

Data / System Administrators. Administrators can efficiently find
low quality, low recent usage datasets and potentially mark them for
archival (cold storage); on the other hand, administrators can also

4Shown quality and usage information is simulated for this demonstration.
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Fig. 2: Visual Monitoring Tool: the Data Lake View lists all datasets in the data lake; the Dataset View provides additional
information (e.g., a preview) about a specific dataset (a), corresponding quality and usage scores (b), temporal evolution of
these scores (c), and an interactive visualization showing attribute and record-level quality and usage information (d).

improve retrieval times for frequently used datasets (e.g., by setting
up custom indexes). Executing DataCockpit separately on an existing
dataset and an incoming batch can reveal changes in quality scores,
and when the change is sufficiently negative, can help users to action
and stop ‘bad data’ from ingestion into the system.

Developers. DataCockpit’s open-source nature allows developers to
create usage and quality powered tracking and monitoring capabilities
into their own new tools, enabling end-users to better navigate the
corresponding data environments.

End-users. Even experienced end-users who perform data prepara-
tion and analysis tasks may not be aware of usage and quality metrics
of all datasets in their data lake. DataCockpit affords awareness,
thereby improving effectiveness of their tasks. They can re-use ‘tried,
tested, and effective’ attributes from past analysis and dashboards for

future ones. By computing quality and usage scores for each incoming
data batch and cumulatively for the entire dataset, these users can
highlight shifting trends in the data (e.g., “age” is being queried a
lot). New users can efficiently learn these metrics across all datasets,
flattening their learning curve.

IV. DISCUSSION, LIMITATIONS, AND FUTURE WORK

DataCockpit currently supports limited data usage and quality met-
rics; we plan to implement more metrics (e.g., consistency, accu-
racy [20], [31]–[36]) and also support advanced computational abil-
ities (e.g., anomaly detection). Next, DataCockpit currently supports
diverse end-user needs by allowing developers to configure various
parameters (e.g., missingness criteria for completeness) and thresh-
olds (e.g., expiry criteria for freshness); as this manual configuration
can sometimes be tedious, future work may provide out of the box



defaults or elicit them from end-users via the user interface of the
monitoring tool. We also plan to make DataCockpit privacy friendly
by serving user requests based on an organization’s data governance
policy. Lastly, DataCockpit currently supports SQLAlchemy-based
database connections and CSV-based usage logs; we will support
other semi-, un-, and structured data sources (e.g., JSON, Parquet),
and external tool integrations (e.g., Snowflake [37]) in the future.
Our goal remains to offer a customizable, open-source alternative to
existing solutions (e.g., Collibra [38]).

V. CONCLUSION

We leveraged datasets, usage logs, and associated meta-data within
a data lake of relational databases to compute usage and quality in-
formation across attributes, records, and databases. We implemented
these in a Python toolkit, DataCockpit, and built a visual monitoring
tool to demonstrate its use during data lake navigation and monitoring
for data / system administrators, developers, and end-users.
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