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Abstract— Most real-world datasets contain missing values yet most exploratory data analysis (EDA) systems only support visualising
data points with complete cases. This omission may potentially lead the user to biased analyses and insights. Imputation techniques
can help estimate the value of a missing data point, but introduces additional uncertainty. In this work, we investigate the effects of
visualising imputed values in charts using different ways of representing data imputations and imputation uncertainty—no imputation,
mean, 95% confidence intervals, probability density plots, gradient intervals, and hypothetical outcome plots. We focus on scatterplots,
which is a commonly used chart type, and conduct a crowdsourced study with 202 participants. We measure users’ bias and precision
in performing two tasks—estimating average and detecting trend—and their self-reported confidence in performing these tasks. Our
results suggest that, when estimating averages, uncertainty representations may reduce bias but at the cost of decreasing precision.
When estimating trend, only hypothetical outcome plots may lead to a small probability of reducing bias while increasing precision.
Participants in every uncertainty representation were less certain about their response when compared to the baseline. The findings
point towards potential trade-offs in using uncertainty encodings for datasets with a large number of missing values. This paper and the
associated analysis materials are available at: https://osf.io/q4y5r/

Index Terms—Uncertainty visualisations, missing values, data imputation, multivariate data

1 INTRODUCTION

Data quality issues are a persistent problem for visual analytic systems,
and missing values are one of the most common causes of imperfect
data [30]. The presence of missing data points can make it challenging
for analysts to interpret and derive insights from the data, using visual
analysis tools or otherwise. Fig. 1 shows an example of the impact
missing values can have on inference—the incomplete dataset may
lead to an analyst underestimating the trend in the data. Current visual
analytic systems do not provide much support to users for handling
missing values in their analysis. For instance, Tableau either indicates
the number of dropped cases that are not represented in the graph
(default) or allows the user to represent them as zero values. While
excluding missing values during the analysis phase (also known as
complete-case analysis) may be appropriate in certain conditions [33],
it requires observations to be missing completely at random, which is
not often the case. In fact, missing completely at random is a fairly
strict but often unrealistic assumption about the data [33, 40]. If data is
missing completely at random, dropping all observations with missing
values from the incomplete dataset can be equivalent to a smaller but
still complete dataset [33]. However, when assumptions for complete-
case analysis do not hold, visualisation systems do not provide sufficient
safeguards for users against the potential pitfalls of making erroneous
inferences from datasets that contain missing values.

In statistics, a common approach for dealing with incomplete data
is to impute missing values, which can result in more reliable infer-
ences [33]. Recent work has studied how users interpret visualisations
of incomplete datasets, when missing values are highlighted [2, 15, 41]
or imputed [41]. These studies have found that highlighting the pres-
ence of missing values were preferred by participants and improved
perceived data quality, while imputing missing values may lead to
improvement in task performance. However, the mechanism under
which missing values occurred in the datasets used as stimuli in prior
work was missing completely at random. While prior work [41] did not
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Fig. 1. The impact of missing values on trend estimation

find any meaningful effect of different visualisation methods, such as
error bars, for representing imputed values on task performance, this
may not stand true for other missingness mechanisms. Moreover, prior
work [2, 15, 41] has exclusively focused on investigating the effects
of missing data on very specific missingness pattern (univariate miss-
ingness where missing values are confined to a single variable), data
types (time-series), and chart type (line graphs and bar graphs only),
which leaves the effects of showing imputations for general multivariate
datasets with distinct missingness patterns and chart types not known.

However, imputation methods cannot precisely calculate the value
of a missing observation, instead providing an estimate with some de-
gree of uncertainty. Thus, how uncertainty is encoded in visualisation
can be another important factor affecting participants’ ability to make
inferences from charts. Prior work has only used error bars to show the
uncertainty of the imputed values [40,41] but common static representa-
tions such as error bars or confidence bands can be confusing or difficult
to interpret [10, 21], leading to the proposal of numerous alternative
uncertainty representations in recent visualisation literature such as hy-
pothetical outcome plots [23, 27], probability density functions and its
variants [10,20,25], which provide greater distributional information to
the viewer. These techniques have been found to have varying degrees
of effectiveness both in improving statistical reasoning as well as the
quality of decisions in relevant tasks [23, 26, 27, 29]. However, these
studies focused on decision making based on a single represented prob-
ability distribution or comparison between two represented probability
distributions. Oftentimes, incomplete datasets contain multiple missing
values which when represented with uncertainty information, will re-
quire users to process several probability distributions within a larger
visualization at the same time. The effect of uncertainty representations
in such scenarios remains not known from prior work.

In this study, we investigate the effect of six different ways of rep-
resenting data imputations and imputation uncertainty (§3.2) on two
visual analytics tasks—estimating average and detecting trend—with
scatterplots (§3.3). The datasets used as stimuli were missing at random
and trivariate, with missing values occurring in two of the dimensions
(§3.1), which relaxes some of the constraints on missingness mecha-
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nism and data types from previous studies. We measure performance for
each task using bias—presence of systematic errors—and precision—
consistency in participants responses, and also record participants’
self-reported confidence in their responses.

In the average estimation task, when compared to a baseline of
no imputation, we find that all uncertainty representations reduced
bias (desirable), but may also reduce precision (undesirable). Further,
using confidence intervals to represent uncertainty may even result in
unbiased, albeit somewhat more inconsistent, responses on average. In
the trend estimation task, we find the effects to be inconsistent across
the two proportions of missing data tested—showing only mean of
imputations may have a small effect on reducing bias at low proportion
of missing data, but may likely not reduce bias at higher proportion of
missing data; on the other hand, while the hypothetical outcome plots
may not reduce bias at lower proportion of missing data, it may likely
reduce bias at higher proportion of missing data.

Our results highlight potential trade-offs that various uncertainty
representations offer when visualising imputations of missing data in
scatterplots, and the importance of taking tasks into account. Our
primary contributions are as follows:

• Results of a pre-registered empirical study with 202 partici-
pants on the effect of six different representations of imputations
and imputation uncertainty on scatterplots when performing two
visual analytic tasks.

• A discussion on the trade-offs of the six representations on
participants’ bias and precision in performing the two visual
analytic tasks.

2 RELATED WORK

It is unclear how visualisation systems should represent datasets with
missing values to support inference [51]. Visualisation systems such as
Wrangler [28], xGobi [43,44], VIM [46], and MANET [48] made some
initial attempts to support inspecting the presence of, and visualising
imputations of missing values. xGobi [43,44] and MANET [48] placed
significant emphasis on dealing with missing values during interactive
graphical analysis. MANET [48] attempted to make users aware of
the presence of missing values by making it easier to keep track of
them—in charts such as scatterplots, where one of the two variables are
missing, they visualise points for which information for one-dimension
is available by plotting them along a special axis; in charts such as
histograms, they augment the chart with an additional bar representing
the frequency of missing values. xGobi [43, 44] provided users with
functions to keep track of missing values, inspect missing value pat-
terns, and impute missing values using different imputation methods.
Graphical exploration of imputations methods were implemented to
enable users to examine and compare precomputed imputations.

Despite their promise, neither of these two tools are commonly used
today. Even though these solutions considered missing values during
the EDA process, they did not investigate how imputed values should
be represented to best support users in making inferences from the data.
Most widely used visual analytics systems currently, such as Tableau
or PowerBI, do not support imputation of missing data, and very few
studies have investigated how analysts may benefit from representing
imputed values and visualizing their uncertainty.

2.1 Theory of Missing Data
To ground the discussion of missing values and methods for treating
them, we first provide a brief overview of the relevant statistical tech-
niques and terminology. We consider tabular data structures where
each row represents a unique observation, and each column represents
a unique variable. Two factors which impact imputation and represen-
tation of values are missingness mechanism and missingness pattern.

Missingness Mechanism describes the relationship between the vari-
ables that are missing and the other variables in the dataset:

1. Missing Completely at Random (MCAR): the observations which
are missing are a random subset of all observations [6]; that means

missingness does not depend on the values of either the missing
or observed data. In such cases, dropping all observations with
missing values, also known as complete case analysis, is often
appropriate and the result will be equivalent to the analysis being
performed on a smaller dataset.

2. Missing at Random (MAR): there are “systemic differences be-
tween the missing and observed cases, but these can be entirely
explained by other observed variables” [6]. In other words, miss-
ingness depends only on the observed variables in the dataset.

3. Missing Not at Random (MNAR): there are systemic differences
between the missing and observed cases which cannot be entirely
explained by the observed variables.

Prior work has primarily investigated data which is MCAR [40, 41].
However we omit this condition as it is a fairly strict assumption for
most real-world data, and complete case analysis is often appropriate
for such data, making imputations somewhat redundant. We also omit
MNAR as such datasets require more complex imputation methods
[33], and were deemed beyond the scope of the current study. In this
work, we focus on data which is MAR.

Missingness Pattern describes which variables are missing and which
are observed in a dataset [33], as well as indicating whether certain
groups of variables have values missing together. Prior work [2, 15,
41] has focused on univariate missing data where missing values are
confined to a single variable. We extend prior work by investigating
missingness in two variables within a trivariate dataset. There can be
different types of missingness patterns even though only two variables
contain missing values (Fig. 2B and C). We restrict our study to the
missingness pattern depicted in Fig. 2B and consider data with only
one missing value per observation (see §3.1 and §3.2 for more details).
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Fig. 2. Different types of missingness patterns

2.2 Evaluating visualisations of data with missing values
Recent work has investigated how different visual representations of
data with missing values can impact the perception of data quality
[15, 41], accuracy of decisions [15, 41], and confidence in decisions
[2, 41]. Eaton et al. [15] explore the effect of zero-filling, omitting
or highlighting missing values in a dataset. Andreasson and Riveiro
explore omission, omission along with explanation, and “fuzziness”—
but it is unclear whether any imputation was performed [2].

Song and Szafir [41] compare a wider range of approaches (highlight-
ing or downplaying presence of missing values, annotating values with
error bars, and omitting information). Complementary to the visual
representations, missing data values were imputed using three differ-
ent techniques (zero-filling, marginal mean, and linear interpolation).
They evaluated participants’ performance using two tasks—average and
trend detection—which were operationalised as binary choice questions.
They found that two of the imputation methods—linear interpolation
and marginal means—improved accuracy, but did not find any effect
of visualisation technique on accuracy. As the underlying dataset was
missing completely at random, the presence of missing values should
not have affected users’ performance. Their results suggest that the



presence of misleading information such as zero-filling can have an
adverse effect on the user. In a subsequent study, Song et al. [40]
compared the effect of visualising imputations with error bars in a
scatterplot to no imputation. They found that showing imputations with
error bars had an effect on users’ decision-making workflow but did
not have a statistically significant effect on mental demand.

Most of these studies [2, 15, 41] looked at line and bar charts, de-
picting a very specific type of data (time-series); while one prior work
did consider scatterplots [40] their focus was on the exploratory data
analysis workflow and participants’ mental demand, instead of partici-
pants performance in visualisation tasks. Although a few studies have
used uncertainty representations to show imputed estimates [40,41], the
design space was restricted to only error bars, leaving a large number
of uncertainty visualisations, proposed in recent work, unexplored. Our
study aims to fill this gap by investigating user performance of the two
visual analytics tasks—average and trend estimation—in scatterplots
with various types of uncertainty representations.

2.3 Communicating Imputation & Uncertainty Information
Different methods of conveying uncertainty can impact task perfor-
mance. Error bars and box plots, two commonly used representations,
encode summary statistics as marks, hiding distributional informa-
tion from the user, and are designed with the goal of cognitive ef-
ficiency [8, 22, 32, 47]. However, they may not be ideal for many
tasks [10, 26], may result in the misinterpretation of the statistic be-
ing encoded [5, 10, 21], and may even require greater cognitive effort
compared to representations that provide distributional information [9]

Probability density function (PDF) plots, and its variants such as
violin plots [20] and gradient plots [10, 25] allow presentation of uni-
variate distributional information, with the design goal of providing
complete information about the underlying probability distribution to
the viewer. Hypothetical outcome plots (HOPs) [23,27] use animations
to convey distribution information, with each frame consisting of a
draw from an underlying distribution. Uncertainty visualisations which
communicate distributional information have been found to improve
accuracy in statistical reasoning [23, 29], as well as performance in
certain decision-making tasks [9, 17, 26, 27].

Most prior work on uncertainty visualisations requires users to con-
sider one or two probability distributions for performing the statistical
or decision-making task. Greis et al. [18] investigated how a viewer
might integrate uncertainty from two sources in an average estimation
task, and found that participants were able to weigh information more
accurately when distributional information was provided. However,
most incomplete datasets can have a large number of missing observa-
tions. An imputation method will estimate, with uncertainty, values for
each missing observation. Thus, in such a scenario, users will have to
consider and aggregate information from multiple distributions. In our
study, we compare five types of uncertainty visualizations which en-
code either summary or distributional information, as well as a baseline
of no imputation, to cover a range of previously-evaluated techniques.

3 EXPERIMENT DESIGN

We design and conduct a pre-registered experiment to study the effect of
different uncertainty encodings on users’ performance in low-level visu-
alisation tasks, and self-reported confidence in their responses, when in-
specting an incomplete dataset. Our pre-registration can be found here:
(https://aspredicted.org/blind.php?x=137_X7N). We use data
with two quantitative variables (x, y) and one binary variable (z). Par-
ticipants were asked to perform two visual analytic tasks—average and
trend estimation—with scatterplots. The tasks were selected through
an investigation of a full set of common visual analytics tasks (§3.3).
We use scatterplots as it is an effective representation for a multivariate
dataset with two quantitative variables, supports encoding of imputa-
tions for both quantitative variables at the same time, and is ideal for the
two tasks we consider in the study. We simulate datasets where missing
values were imputed (§3.4) and imputations were visualised using six
distinct representations (§3.2). We also consider other factors which
may impact the users’ performance such as the missingness mechanism,
patterns, and proportion (§3.1).

We conducted a pilot study to determine the size and direction of
effects, if any exist, of the experimental variables. For the pilot, we
used a real-world dataset, with either 20%, 30%, and 50% missing
values, which are three levels of missingness proportions that have been
considered in prior work on data imputation [14, 38, 41], and evaluated
three representations—baseline, mean and CI—as a preliminary inves-
tigation on the effect of data imputation and uncertainty. We focused on
a constrained design space of uncertainty visualisation to obtain more
statistical power from a smaller sample of participants. In addition
to the two tasks included in the final study, we also considered Find
extremum and Determine Range tasks in the pilot study. We use the
findings from our pilot study to refine the experimental design space,
which we discuss in further detail below.

3.1 Manifestation of Missing Values in the Dataset
As discussed in §2.1, there are various ways in which missingness can
manifest in a dataset, and consequently affect both how the data may
be represented and how a user performs inference.

Missingness mechanism: The mechanism by which data is missing will
impact how missing values may be imputed and the inferences that may
be drawn. As discussed in § 2.1, we consider data which is MAR, with
missingness correlated with the categorical variable (N), as imputing
missing values may improve inference in such cases [33].

Missingness patterns: Whether missing values are only restricted to one
variable (univariate missingness) or two or more variables (multivariate
missingness) can affect how imputed estimates and corresponding un-
certainty information can be encoded as marks in a graph. In our study,
we allow missing values to occur in both variables (x and y), relaxing
the univariate data settings of prior studies [2, 15, 41], but only per-
mit missing values to occur in one variable per observation (Fig. 2B);
this constraint allows us to focus on univariate representations of un-
certainty (§3.2), which is commonly observed in existing uncertainty
visualization studies and applications [17, 18, 26, 29]. If multiple vari-
ables for an observation were missing (Fig. 2C), we would require
multidimensional representations of uncertainty to encode imputations.
However, representing uncertainty of multidimensional distributions
through a single mark poses a significant challenge as, in addition to
communicating the uncertainty for each variable, we would also need
to communicate the correlation between the missing variables. For
example, an extension of confidence intervals for both x and y variables
to represent 2D uncertainty can be misleading because it suppresses
information on the correlation between the two variables; consequently
two very different multivariate distributions can look identical in this
representation. Thus, we deemed showing multi-dimensional uncer-
tainty on a single mark to be outside the scope of current work, and
focus on representing univariate missingness for each data point.

Proportion of missing values: We manipulate the proportion of miss-
ing data by creating incomplete datasets with 30% and 50% missing
observations. We dropped the 20% missing proportion condition from
the final study as results from our pilot study (§9 in the supplementary
materials) and previous work [41], suggested that performance in tasks
will likely not be impacted at lower proportions of missing data.

3.2 Visual Representations
The set of feasible representations that can be used to represent uncer-
tainty is constrained by the encoding that has been used to map the
variable—if we have uncertainty information for certain observations of
the quantitative variable x, the encoding that is used to map x will con-
strain the available uncertainty representations. Consider for instance
the scatterplot, where both x and y are mapped to position channels, and
both x and y have missing values; uncertainty representations which
use hue, such as Value Suppressing Uncertainty Palettes (VSUPs) [12]
cannot be used as neither of the variables which contain uncertainty
are being mapped to color. As we only consider uncertainty in the
quantitative variables (x, y), we include four types of uncertainty visual-
isations which satisfy this constraint from recent work [18, 26, 29]. We
consider two additional visual representations where we do not include
imputations (baseline) or do not include uncertainty (mean).
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Baseline: No Imputation
All complete cases are represented using a scatterplot with any missing
observations not presented to the viewer. This technique is often the

default in systems like Tableau,
thus making it a reasonable
baseline for comparison. We use
filled circles as marks to represent
each observed data value.

Mean: Mean Point Estimate
Mean point estimates derived from our imputation method are repre-
sented using unfilled circle marks, while observed values are represen-

ted using filled circles similar to
the baseline. No uncertainty infor-
mation about the imputed estimate
is encoded in this representation.

CI: Mean Point Estimate with 95% Confidence Intervals
95% confidence intervals are one of the most commonly used encodings
for communicating uncertainty. Since we have distributional informa-
tion about each imputation, we estimate the 95% upper and lower

bounds of this distribution and
represent each imputed value using
a point estimate and the corre-
sponding 95% confidence interval.

Density: Probability Density Plots
Probability density function (PDF) plots, and other equivalents such
as eyeball plots [42], violin plots [10] or raindrop plots [4], provide
complete distributional information regarding a random value, using
the orthogonal dimension to encode probability density. For instance,
if the y value of a data point is imputed, the probability density of the
possible y values is encoded as length along the x dimension. These
plots allow a reader to understand the shape of the distribution, and
support judgements about probability and intervals by comparing ratios

of areas. Although these plots
are commonly used, estimating
probabilities from them may be
difficult and may not be the most
accurate [17, 24, 29].

Gradient: Gradient Plots Showing 95% Confidence Intervals
Gradient plots use transparency to encode probability density [10, 25].
We map density values at regular intervals to α transparency, with
values of higher density being mapped to low α (i.e. more opaque).

We include gradient as it might
be a more intuitive encoding of
uncertainty [34] compared to
density while still preserving
distributional information.

HOPs: Hypothetical Outcome Plots of predicted imputed values
HOPS [23] animate a set of draws from a distribution, which in this
case, is the predictive distribution of an imputation. Since we are
performing multiple imputations to estimate missing observations (see

§3.4), HOPs allow us to present
each imputed value, thereby com-
municating what different, hypo-
thetically complete datasets might
look like. We present 50 dis-
tinct frames, and use a frame rate
of 2.5fps (each frame appears for
400ms) as per the recommendation
by Kale et al. [27]

3.3 Tasks
There have been several proposed taxonomies of the various analysis
tasks that visualisation users perform [1, 7, 13, 39]. Following prior

work which investigates the performance of users on low-level tasks
using scatterplots [31], we adopt Amar et al.’s [1] taxonomy which
categorises elements of analysis into the following low-level tasks:
Read Value, Compare Value, Compute Derived Value, Find Extremum,
Find Anomaly, Characterize Distribution, Determine Range, Cluster,
and Correlation. These tasks can be categorised into two groups [3,31]:
individual or elementary tasks are those referring to individual elements
in the chart, and includes the read and compare value tasks; summary
or synoptic tasks involve all or a subset of the elements in the chart, and
include all remaining tasks.

The impact of imputation is likely going to vary based on the type
of tasks. We use two criteria to decide whether to include a task
in our study—first, whether presenting imputation and uncertainty
information would impact the task; and second, whether a scatterplot
is suited for performing the task. For individual tasks, two scenarios
arise—in the first scenario, the target data point is not missing, which
makes the task trivial and has been extensively studied in prior work;
in the second, the target data point is missing, which would make
the task impossible in the no imputation condition, and similar to
probability estimation in the other conditions. This has been studied in
prior work [23, 29] and it makes more sense to look at only the single
distribution when performing this task. Thus, we exclude individual
tasks as presenting imputations are not going to impact such tasks.

For summary tasks, imputations do play a role—when missing values
are not imputed and hence omitted from the graph, the user would
be performing tasks based on incomplete information, but may be
unaware of this fact; when missing values are imputed, the user is
supposedly acting on more complete information, but has to factor in
the quality of imputations. Thus, we focus only on summary tasks and
systematically review them to identify those that are likely to be affected
by visualisation of imputed values. Find Extremum and Determine
Range tasks are only non-trivial if an extremum is missing as otherwise,
it will be no different then the analogous task for a dataset with no
missing values; if an extremum is indeed missing, it will require the user
to consider points at the tails of a distribution which are less likely to be
accurately imputed, thereby diminishing the value of imputation. These
two tasks were included in our pilot study, and as expected, we did
not find a meaningful effect of imputation. Characterize Distribution
task may be operationalised in different ways [39], and have subjective
definitions. If the task is to understand the (joint or marginal) probability
distribution of a variable, scatterplots may not even be best suited for
the task. Cluster and Find Anomaly tasks have subjective definitions
where ground truth is hard to specify and may introduce additional bias
in the estimation. In this work, we try to focus on tasks that have clear
ground-truth answers and can be performed based on objective value
estimation. We thus omit these five tasks and focus on the remaining
two tasks which are formulated as follows:

• Compute Derived Value: What is the average value of x?

• Correlation: Identify the trend line which best represents the
relationship between x and y?

3.4 Stimuli Data Generation and Imputation
The results of our pilot study (§9 in the supplementary materials)
indicated that there may be some effect of uncertainty encoding and
proportion, but they were too noisy to determine, especially as the real
world dataset used did not allow us to easily control for the difference
between the incomplete and imputed datasets. This motivated us to use
a simulated dataset—we first generate complete datasets and remove
values to create an incomplete dataset that is MAR; we then impute the
missing values and compute the uncertainty.

Generation: We sample 25 points from each of the two multivariate
distributions: D1 = MVRNorm(µ1,Σ) and D2 = MVRNorm(µ2,Σ),
where µ1,µ2 are 6-dimensional vectors, and Σ is a 6× 6 covariance
matrix. We use a group indicator variable, I to denote whether a
sampled point belonged to D1 or D2. This results in a single dataset of
N = 50 observations. (Code used to generate the stimuli is included in
the supplementary materials).
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Generating Incomplete Datasets: We remove 30% or 50% of observa-
tions from the generated complete dataset under MAR using the mice
R package [49] to obtain the incomplete datasets. Under MAR, missing
data is correlated with a variable present in the dataset—in our case,
missing values are correlated with the group indicator variable, I.

Imputation: We use the mice package to implement a multiple impu-
tations procedure to fill in missing values for each simulated dataset
using predictive mean matching. “Multiple imputation involves replac-
ing each missing data point with D ≥ 2 imputed values such that D
complete data sets can be created from imputation procedure.” [33] We
estimate D = 50 imputations for each missing value.

Uncertainty calculation: Multiple imputations obtained from the pre-
vious step reflect the sampling variability associated with imputation,
allowing us to quantify the imputation uncertainty for each missing
data point. We consider θ̄i as the mean of the imputation for the i− th
missing data point, where N is the size of the dataset:

θ̄i =
1
D

N

∑
n=1

θd,i

We then define s̄i as the estimated standard error of the mean imputed
value, which is defined as follows:

s̄i =
1√
D

Var(θd,i)

Dataset Sampling: Treating each dimension as a unique variable, and
taking two variables at a time, we obtain

(6
2
)
×500×2 = 15000 unique

bivariate visualisations. We compute average and trend statistics for
each of the complete, incomplete and imputed versions of the simulated
datasets. The trend statistic is the estimated slope parameter obtained
when regressing the y variable on to the x variable. From the 15000
candidate bivariate datasets, we sample 16 datasets to be used in our
experiment using the following metric. We estimate the difference in
the calculated statistics between the incomplete and imputed datasets—
for average, we use the difference relative to the uncertainty (standard
error) of the corresponding variable; for trend, we use the absolute
difference. This difference, which we will refer to as ∆, indicates the
difference in the solutions of our tasks for the incomplete and imputed
datasets. If ∆ is low, it implies that imputation is unlikely to improve
task performance. We sample eight datasets for each task at two levels
of ∆: 0.15 and 0.2. For average estimation, these values were selected
because they correspond to small-to-medium standardised effect sizes
(Cohen’s d). For trend estimation, prior work [11] suggests that the
margin of error in such tasks could lie in the range of 0.08-0.12; thus,
we selected datasets with a slightly greater difference to be able to
detect difference in participants’ performance while accounting for
potential margin of error. We use these datasets to create a chart for
each visual representation being considered in our study.

3.5 Procedure
We employed a mixed design, using between-subjects treatment for
representation (6), and a within-subjects treatments for tasks (2) and
proportion (2). We define one block of trials as a single task repeated

eight times. Proportion is randomly shuffled within each block of trials.
Each participant completes 2 blocks of trials. Before participants begin
the study they go through a tutorial which presents them with a graph
similar to the ones they will subsequently be shown during the trials.
The tutorial describes the graph, the presence of missing values and
the proportion of missing values. For the test conditions, the tutorial
informs the participants that an appropriate imputation method was
used to estimate the missing values, and that these estimates contain
uncertainty. For each of the uncertainty representation conditions,
participants were given a brief description of how to interpret them.
Following this description, participants are given a practice task and
are provided feedback on their performance. Screenshots of the study
interface can be found in the supplemental materials.

Fig. 3 provides a quick overview of how the experiment was set
up. Participants in all conditions were informed of the proportion of
missing values in the chart shown to them. For each task, we elicit
responses using a direct report method [16] which involved either enter-
ing numeric values into a textbox for average estimation or adjusting
a slider to modify the slope of a line for trend estimation. In addition,
we elicit participants’ self-reported confidence in their response using a
five-item Likert-style question. As per our pre-registration, we recruited
a total of 210 participants (35 participants for each between-subjects
treatment), using the prolific.co platform, between Oct 10th and
Oct 17th 2021. Each participant was paid $3 for completing the study.
The median completion time was 12mins 13s, and the median wage was
$14.76/hr. Participants who failed the attention check question were not
allowed to complete the study. We excluded a further four participants
whose responses for the trend estimation task was exactly the same
value across all trials. Another four participants were excluded because
they participated in the study multiple times, and when participating
for the first time they did not complete the entire set of 16 trials. As a
result, we were left with 202 participants. All participants were fluent
in English, and resided in the United States; 49% of our participants
self-identified as Female while one did not disclose, and all but one
participants had completed a college degree. A detailed overview of the
experimental setup can be found in §2 of the supplementary materials.

4 ANALYSIS

Following similar work in the visualisation literature [35], we use bias
and precision as measures to compare participants’ performance. Bias
(Fig. 4) indicates whether and how the mean response deviates from
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Fig. 4. Bias and precision measures used in the analysis (figure adapted
from McColeman and Yang et al. [35]).
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the actual value in a systematic manner. Even though each participants’
response to a particular task may contain some error, if they are on
average unbiased, the overall distribution of errors is generally expected
to possess a mean at or close to zero. On the other hand, if participants
have a tendency to consistently make mistakes in a certain direction,
they are exhibiting signs of bias. Precision (Fig. 4) describes how
consistent participants are in their responses relative to the actual value.
If participants’ responses are precise, their responses are very close to
each other; if they are imprecise, then participants’ responses may vary
a great deal from one another. We use Bayesian hierarchical regression
models for analysis as they provide complete distributional information
for each parameter, and support probabilistic comparisons, as opposed
to reporting dichotomous results from statistical significance tests.

4.1 Analysis of Performance in Tasks

We compare bias and precision across the between-subject (representa-
tion variable) and within-subject (proportion variable) conditions. We
use a Bayesian hierarchical model to estimate the error distribution,
using a student’s t-distribution as the likelihood function. The mean
and variance of the student’s t-distribution are the bias and precision
estimates for participants’ responses.

Our regression model can be formulated using an extended form of
the Wilkinson-Rogers-Pinheiro-Bates [37, 50] notation as follows:

1: error ∼ student_t(ν ,µ,σ)
2: µ = representation∗ proportion +
3: ad j_trial_id +block_id +axis +
4: (proportion|participant_id)
5: log(σ) = representation∗ proportion +
6: ad j_trial_id +block_id +axis +
7: (proportion|participant_id)

Here, error is the difference between a participant’s response and
the ground truth value; representation is a variable which indicates
the uncertainty visualisation condition; proportion is a variable of two
levels which indicates the proportion of missing data; adj_trial_id is an
indicator variable for the trial number of the response, adjusted to be
a value between -1 and 1; block_id indicates whether the response is
from the first or second set of trials; axis indicates whether the average
estimation task was performed for the variable mapped to the x or y
axis. For trend estimation this predictor is omitted; and participant_id
is a unique participant identifier.

Line 1: We define the likelihood of the distribution of the error in
participants’ responses as a student_t distribution. The student_t
distribution is parameterised by ν (degree of freedom), which deter-
mines how fat the tails of the distribution are. The parameters µ (mean),
and σ (scale) are our estimates for bias and precision respectively.

Line 2: We estimate the population-level effects of the experimental
variables representation and proportion on µ (bias). These predictors
determine the effect of different uncertainty representations and the
proportion of missing data on bias.

Line 3: Our experiment consists of two blocks of eight trials each. We
may reasonably expect that as participants progress through the trials,
they may learn and find the task progressively easier. We may also
expect fatigue to play a role. These two variables capture any potential
learning or fatigue effects.

Line 4: Each participant will likely have a varying level of ability for
accurately completing our tasks, which may result in errors being more
correlated within one participant but less correlated across participants.
A varying intercepts term for participant_id in our model allows us to
account for such variation. Additionally, we may expect the effect of
proportion, which is varied within subjects, to vary across participants,
which we thus include using a varying slopes term. Varying slopes and
intercepts provides us with improved estimates from repeated measures
data by explicitly accounting for different sources of variation [36].

Lines 5-7: We use the same predictors described above to estimate for
σ , as we believe that the same factors which may effect bias will also
effect participants’ precision.

4.2 Analysis of Confidence
We use a Bayesian hierarchical ordinal regression model to estimate
a participant’s probability of answering each item on the Likert-style
question, and the effects of different experimental variables on this
probability. Our regression model can be formulated as:

1: Ri ∼ Ordered(p)
2: logit(pk) = representation∗ proportion +
3: ad j_trial_id +block_id +
4: (proportion|participant_id)

Line 1: The ordered distribution is a categorical distribution which
takes a vector, p = {p1, p2, p3, p4}. The length of p depends on the
number of discrete levels of the categorical response value. Each
element in this vector indicates the cumulative probabilities for each
response value, except for the maximum value which will always have
a probability of 1 [36].

Lines 2-3: We estimate the effects of the experimental variables repre-
sentation and proportion on pk as population level effects. We include
predictors for ad j_trial_id and block_id to capture any effects of learn-
ing or fatigue as participants progress through the trial.

Line 4: We expect some variation between participants’ reported confi-
dence due to individual characteristics. We may also expect proportion
to effect participants differently. Varying slopes and intercepts are
included to account for these sources of variation.

5 RESULTS

Our model estimates bias and precision for an average participant for
each representation and proportion. We present results for an average
participant to remove the effects of individual variation that is captured
by our model. We marginalise over ad j_trial_id, block_id and axis to
average out the influence of these variables, as they do not appear to
have a meaningful effect on our measures.

5.1 Average Estimation Task
For the average estimation task, the difference in estimates between the
two levels of proportion are small and consistent for each representation.
The results broken down by proportion can be found in §5.1-5.2 of the
supplementary materials.

A. Bias in participants’ responses (average estimation)

In all representation conditions except CI, an average participant is
likely to be biased, and will consistently underestimate the average
value of a set of points (Fig. 5A). Unsurprisingly, an average partici-
pant will exhibit the greatest magnitude of bias in the no imputation
(baseline) condition. When compared to this baseline, all other visual
representations appear to reduce bias (Fig. 5A). An average participant
in the HOPs condition is expected to show the smallest reduction in bias,
with an estimated 95% probability of being less biased compared to the
baseline. The CI condition is expected to exhibit the greatest reduction
in bias, perhaps even resulting in unbiased estimates on average.

B. Precision of participants’ responses (average estimation)

An average participant is the most precise (most consistent in their
responses) in the no imputation and mean conditions (Figure 5B).
There is a small probability (60%) that the average participant might be
slightly more precise in the mean condition compared to the baseline.
The other uncertainty representation conditions—CI, density, gradient,
and HOPs—are all more likely to result in less precise estimates for an
average participant, with an estimated probability of at least 90%.

C. Self reported confidence (average estimation)

Our model analysing confidence provides us with a probability dis-
tribution for each item on the Likert-style question, for an average
participant in each representation condition. Participants were some-
what unsure about their responses in every representation conditions as
indicated by the high estimated probability of the average participant
responding 2 or 3 on the Likert-style question compared to the other
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Fig. 5. Experiment results for the mean estimation tasks: posterior probability densities, mean and 95% credible intervals for bias and precision for
an average participant in each representation condition (left). We compare the difference in bias and precision compared to the baseline (right) and
estimate the probability of improvement for each representation condition.

values (Fig. 6). As such we compare the cumulative probability for
an average participant to respond to an item 3 or greater on the Likert-
style question, Pr(≥ 3) for each representation condition. The average
participant was likely to be most confident in the no imputation condi-
tion, with Pr(≥ 3) = 64%. Presenting imputations without uncertainty
(mean condition) results in slightly less confidence, compared to the
baseline, with Pr(≥ 3) = 52%. The other representation conditions
which explicitly encode uncertainty information result in even lesser
confidence in their response, with Pr(≥ 3) = 31%,33%,38% and 46%
for CI, HOPs, density and gradient conditions respectively.

5.2 Trend estimation task
Unlike in the average estimation task, for trend estimation, we observe
a larger and sometimes inconsistent effect of proportion on the quality
of participants’ responses. Hence, in the following sections, we look at
the results separately for each level of proportion.

A. Bias in participants’ responses (trend estimation)

The average participant, in all representation conditions, at both levels
of proportion appears to systematically overestimate the trend in the
data (Fig. 7A). At lower levels of missing data proportion, only the
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Fig. 6. Experiment results for participants’ confidence in their responses
for the trend estimation task

mean condition may reduce bias in responses, with an estimated proba-
bility of 88%, compared to the baseline. When compared to the baseline
condition, the average participant’s responses in gradient and HOPs
were likely to be just as biased when shown; however, the responses in
density and CI conditions may likely become more biased. At higher
levels of missing data proportion, only the HOPs condition may reduce
the bias in responses, with an estimated probability of 91%, compared
to the baseline. The average participant in all the other representation
conditions may exhibit increased bias in their responses.

B. Precision of participants’ responses (trend estimation)
For the average participant, when the proportion of missing data in-
creases, precision will likely decrease in the baseline, mean, and CI
conditions, while it may remain similar in the HOPs, gradient, and
density conditions (Fig. 7B). The average participant was most precise
when presented with HOPs, at both levels of proportion. Compared to
the baseline, HOPs is more likely to result in more precise responses
with an estimated probability of 79% and 99% when the proportion of
missing values is 30% and 50% respectively. All the other representa-
tion conditions will either not improve precision (mean), or may lead
to less precision (gradient, density, CI).

C. Self reported confidence (trend estimation)
Compared to the average estimation task, the average participant ap-
pears to be more confident in their responses when performing the trend
estimation task, as indicated by the greater estimated probability of
responding 3 or higher on the Likert-style question across all repre-
sentation conditions (Fig. 8). The average participant is likely to have
similar confidence in the no imputation condition (Pr(≥ 3) = 66%),
as the mean (Pr(≥ 3) = 67%) condition, while they are likely to be
only marginally less confident in gradient (Pr(≥ 3) = 64%), and HOPs
(Pr(≥ 3) = 58%) conditions.

6 DISCUSSION

The effect of imputating and encoding imputations with uncertainty
in a chart can vary based on the task, and in some cases, the amount
of missing data. In the following, we discuss how our findings may
impact the design of charts for data with missing values.
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Fig. 7. Results for trend estimation tasks: posterior probability densities, mean and 95% credible intervals for bias and precision for an average
participant in each representation, conditional on proportion (left). We compare the difference in bias and precision compared to the baseline (right)
and estimate the probability of improvement for each representation condition, conditional on proportion.

6.1 To Add or Not To Add (Uncertainty Information)?

In the average estimation task, there is an almost deterministic benefit
of showing imputed estimates (Pr(less biased)> 99% for all represen-
tations but HOPs; Fig. 5), as all our treatment visualisation conditions
are likely to decrease error and reduce bias when compared to the base-
line. However, the benefit of adding uncertainty information may be
more inconsistent. Only the mean condition, which does not present
any uncertainty information, led to no decrease in precision compared
to the baseline, while all conditions which encode uncertainty informa-
tion (CI, density, gradient and HOPs) decreased precision, suggesting
that presenting uncertainty information may lead to participants being
less consistent. A possible explanation for this result may be that the
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presence of additional marks, which are used to encode uncertainty
information, may interfere with participants ability to read values pre-
cisely from the charts or perform ensemble processing [45], or require
greater cognitive effort [9] on the part of the viewer.

Due to this tradeoff, our results suggest that the mean representation
may be superior to HOPs, gradient, and density, as the average partici-
pant will be more precise but will not be more biased. However, the
comparison between mean and CI is more difficult, as when compared
to mean, CI is likely to be less biased with an estimated probability of
98%, but also more imprecise with an estimated probability of 87%.

In the trend estimation task, none of the representations appeared
to consistently improve participants’ performance. The use of CI,
density, and gradient appear to neither consistently reduce bias nor
improve precision, even when compared to the baseline condition of
not showing imputation information. Presenting participants with only
mean imputation information results in similarly precise responses
when compared to the baseline, but leads to an inconsistent effect on
bias—while there may be a reduction in bias at lower proportions
of missing data it is unlikely to do so, or even lead to more bias, at
higher proportions. On the other hand, HOPs appears to improve
precision consistently as well as reducing bias at higher proportions,
but is likely going to result in responses which are just as biased at
lower proportions, when compared to the baseline.

Our results suggest that the number of discrete sources of uncertainty
that a user needs to process when performing a task may potentially
impact their performance. While prior work has suggested that users
may be able to aggregate information from two uncertainty distributions
[18], in our study, each visualised dataset consisted of 50 observations,



resulting in 15 or 25 distinct uncertainty distributions being encoded
in the chart. The average participant was less biased compared to
the baseline at average estimation, but not so for trend estimation,
across all uncertainty representation conditions. As average estimation
is performed along a single axis, they had to consider only half the
uncertainty distributions represented in the chart. Thus, depending
on the task, the additional uncertainty information, represented in this
way, may not always be beneficial to participants. However, if the task
that the user has to perform with a chart is clear, there may still be
considerable benefit from using uncertainty representations such as CI
for average estimation and HOPs for trend estimation.

Unlike previous studies of uncertainty visualisation, since we present
uncertainty information regarding points in a scatterplot, there may ex-
ist certain limitations to using representations such as the density plot.
Density plots use length along the orthogonal dimension to encode
probability density; but, in scatterplots, both x and y dimensions are
already used as visual channels to represent points. Even though we
provide participants with a tutorial on how to interpret each uncertainty
representation, density plots may still be potentially more challeng-
ing for viewers to interpret. Our results do not seem to suggest that
participants in the density condition performed worse than the other
uncertainty conditions; rather in the average estimation task, the den-
sity condition is likely to result in less biased responses (see Fig. 5).
However, we hope that future work can investigate further how the
uncertainty information of points in scatterplots represented by density
plots are perceived by users.

6.2 Is Greater Confidence Desirable?
Our initial hypothesis regarding participants’ self-reported confidence
was that presenting only mean imputation estimates (no uncertainty
information) would lead to participants being the most confident. We
expected that not showing imputations would lead to participants being
less confident, as they would be operating under insufficient informa-
tion, and would be aware of this fact. We expected that the uncertainty
conditions would lead to participants being less confident than the mean
condition due to the explicit presentation of uncertainty information.

While our results suggest that the latter hypothesis is supported, the
former is not. The presence of imputed values (which used hollow
circles as marks as opposed to filled circles for actual values) may
have served as an indication to participants that the data may not be
as reliable, leading them to often be less confident in their responses
compared to the baseline. In an exploratory analysis, we compare the
correlation between participants error and their self-reported confidence.
We find a small negative correlation (-0.16) for the average estimation
task and no correlation (-0.01) for the trend estimation task. While
some prior studies have used self-reported confidence as a metric to
compare uncertainty representations [19, 41], our exploratory analysis
suggests that, in some situations, participants’ self-reported confidence
could potentially be an unreliable indicator of task performance. Since
for the average estimation task, the average participant was likely to
be most confident in the condition they were likely to be most biased
(baseline), we posit that being more uncertain may even be desirable in
certain cases, as that may lead to participants refraining from making
strong, but incorrect, conclusions about the data. In future work, we
would like to further investigate the effect of representing imputed
values in charts through incentivised decision making tasks.

6.3 Does Missing Data Proportion Impact Performance?
As the amount of missing data increases, the amount of available
information in the chart decreases. Thus, we would expect participants’
performance to worsen. We would also expect this degradation to
be greatest when missing observations are simply omitted (i.e., the
no imputation condition), and relatively smaller in all the remaining
representation conditions, when compared to no imputation.

For average estimation, contrary to our expectations, the average
participant in every representation condition was likely to be just as
biased or even slightly less biased (smaller errors), but not more biased,
at higher proportions (see Fig. 5.2 in the supplementary materials).
This result is quite surprising, and may suggest that the presence of

additional marks may not be as distracting for average estimation tasks
when compared to trend estimation.

For trend estimation, as expected, the average participant is more
biased at higher proportions in every representation condition except
HOPs. However, since participants are more likely to perform worse
in the CI, density, and gradient conditions when compared to baseline,
the degradation in performance between lower and higher proportion is,
contrary to expectation, greater than baseline (§7.1 in the supplementary
materials). If the presence of additional marks is indeed making trend
estimation more challenging to participants, this result may be expected,
as at higher proportion, participants would have to consolidate a greater
number of marks encoding uncertainty information.

6.4 Limitations and Future Work

Even though we consider bivariate missingness, we only test data where
one of the quantitative variables was missing at a time. In real-world
datasets, multiple variables may be missing in conjunction, which
may require uncertainty representations which encode two or more
joint probability distributions together. However, two-dimensional
representations of uncertainty are fairly complex to visually encode
and communicate to a viewer, and perhaps even more challenging to
interpret. We hope this can be further explored in future work.

When comparing performance between the average and trend tasks,
our results appeared to suggest that, as the number of discrete sources of
uncertainty increases, users’ task performance may decline. However,
the effect of proportion—a factor which impacts the number of discrete
uncertainty points in the chart—on performance was unclear, and we
cannot make claims regarding the exact relationship between these
two variables. We initially included a 20% missingness proportion
condition in our pilot study, but, similar to prior work [41], we found
that participants were not likely to perform better in the 20% condition
compared to the 30% condition. Thus, we decided to drop the 20%
condition and test only two levels of proportion, allowing us to also
obtain greater statistical power. Despite this, as the proportion of
missing data increases, one should still expect performance to worsen
because of the increase in the number of discrete sources of uncertainty
represented in the chart.

The number of data points is another factor that may influence the
number of discrete uncertainty points in the chart. However, due to
resource constraints, we only focused on “medium” number of 50
data points [39]. We speculate that a study design with more levels
of proportion and varying number of data points in the chart will be
able to better identify the effect of the number of “discrete points with
uncertainty”, which we leave for future work.

More work is also needed to determine the role of factors such
as cognitive load on task performance. Castro et al. [9] highlight
differences in effort, measured using NASA-TLX, when users make
decisions with uncertainty representations. As users in our study had
to aggregate information from multiple probability distributions, we
may expect uncertainty conditions to impact the effort required in
performing the tasks. We hope to explore this in future studies.

7 CONCLUSION

We contribute the results of a crowdsourced study investigating visuali-
sation users’ performance on average and trend estimation tasks with
an incomplete dataset and the role of imputing missing values. We
vary how imputations are encoded in the chart using different uncer-
tainty representations. For average estimation, when compared to not
presenting uncertainty information, we find that showing only mean im-
putations will likely reduce bias (desirable), while showing uncertainty
(CI, density and gradient) may likely reduce bias but may also reduce
precision (undesirable). For trend estimation, we find that showing
only mean of imputations may have a small effect on reducing bias at a
lower proportion of missing data, but may likely not reduce bias at a
higher proportion of missing data; on the other hand, while hypothetical
outcome plots may not reduce bias at a lower proportion of missing
data, it is likely to reduce bias at a higher proportion of missing data.
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