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Abstract—Efficient outage detection and remediation is crucial
for effectively operating cloud computing systems. To remediate
outages, system engineers must quickly identify the causal rela-
tionships between metrics and correlate events across multiple
monitoring tools. In practice, this process largely remains reactive
due to the complexity and general lack of interpretability within
such monitoring environments. This work presents ViSRE: an
integrated visual analytics system that integrates causal and pre-
dictive models with interactive visualizations to aid in proactive
cloud outage management. We develop enhanced node represen-
tations for our causal graph representation to support system
engineers in performing root cause analysis and reasoning about
causality chains in multi-dimensional temporal data. We report
the results of a quantitative assessment of the proposed predictive
models, which show good performance guarantees. To evaluate
and refine our system, we conduct a study with six cloud system
engineers who verify that our proposed techniques can support
proactive cloud maintenance by intuitively displaying temporal
relationships between predicted and raw data. By correlating
and presenting data from disparate sources, ViSRE also reduces
context switching costs and reduces the time spent on manually
correlating events during remediation of time-critical outages.
Video URL: https://youtu.be/ctnYNJ63yxM

Index Terms—Cloud Outage Prediction, Root Cause Analysis,
Software Visualization

I. INTRODUCTION

Cloud systems provide computational services such as servers
and databases over a network on-demand. Cloud applications
are often comprised of multiple interdependent services with
connected components that rely on compute nodes (servers or
virtual machines) to provide storage, processing, networking,
and memory resources. System reliability is essential as out-
ages when a service is under-performing or non-operational
can result in degraded user experience and satisfaction.

The process of outage remediation heavily relies on human
intervention. To effectively remediate outages, Site Reliability
Engineers (SREs) need to monitor systems and identify faults
in a timely manner, correlate events, identify cause and effect,
and find the root cause of outages using the data produced
by monitoring tools. The main challenges related to effective
outage remediation are non-timely detection of faults, the

amount of information generated by cloud monitoring systems,
and the need to constantly context switch between monitoring
applications, which increases the cognitive load on SREs.

Traditional approaches to outage management in cloud sys-
tems are reactive, meaning that SREs must deal with outages
once they have already occurred [1]. Typically, numerous sys-
tem monitoring tools are deployed to monitor system health,
availability, latency, and performance efficiency [2]. These
tools tend to focus on specific functions such as application
log monitoring [3], infrastructure metric monitoring [4], [5],
application metric monitoring [6], and version control sys-
tems [7]. This specialization often creates operational and data
silos that hamper effective fault remediation as SREs need to
monitor multiple tools and manually correlate events across
them. As the complexity of cloud systems increases, manual
correlation of events quickly becomes intractable.

To help SREs better interpret the large quantity of data
generated by these monitoring tools, a common approach is
to leverage visualization in cloud monitoring dashboards to
display and analyze data. Cloud monitoring dashboards present
aggregate view visualizations of data with little to no analytical
support. However, as the complexity of the system increases,
it becomes difficult to distinguish differences and determine
what visualized information is relevant to resolving an error.
Furthermore, due to the specialized nature of monitoring tools,
the process of remediation involves context switching between
the different visualization dashboards utilized by each tool.

To address these challenges we introduce ViSRE: a unified
interactive visual analysis system for outage monitoring and
triaging that aggregates data from multiple sources to proac-
tively monitor the system health and predict the probability of
future outages. Our main research contributions are as follows:

Outage Detection and Remediation Models: Outages are
proactively detected by monitoring metrics using an unsuper-
vised outage prediction model. ViSRE also integrates a causal
inference algorithm to model the relationship between metrics
to support root cause analysis of outages for remediation.



Integrated Visualization Dashboard: We further contribute
ViSRE: an integrated visualization dashboard that aggregates
information from multiple monitoring tools to provide a more
cohesive workflow that requires less context switching across
applications when remediating outages. The dashboard com-
bines three visual components to display raw and predicted
values related to potential outages. First, to enable causal
inference and support root cause analysis, the dashboard
contains a directed acyclic graph that includes enhanced node
glyphs representing the raw and predicted time-series data
for each monitoring metric. Second, to support long-term
trend analysis of system metrics, we visualize the values of
each metric using visually scalable horizon charts. Finally, to
provide a high-level summary of the system state over a longer
period and support drill down, we display a heat map of the
predicted likelihood of an outage. These visualizations connect
the outage prediction result to raw system data providing
greater interpretability of the prediction model results.

Preliminary Evaluation: We quantitatively evaluate our out-
age prediction algorithm and achieve a high AUC score for dif-
ferent outage prediction windows and user-defined thresholds.
We also evaluate the utility of ViSRE with preliminary, semi-
structured interviews with six system experts who provide
feedback on the effectiveness of the prototype for addressing
the current challenges faced in existing cloud monitoring tools.

II. RELATED WORK

Our work leverages prior research on outage prediction, root
cause analysis, and visualizing system behavior and causality.

A. Proactive Outage Prediction and Root Cause Analysis

Proactive outage prediction approaches identify patterns of
irregular behavior likely to result in future outages, thus
allowing enough time to resolve errors before they impact
users. Prior work proposed proactive monitoring approaches
that involve predicting outages in particular settings such as
disk failure [8], [9], network failure [10], or failures due to
changes made in Virtual Machines (VMs) [11], [12]. These
approaches do not generalize effectively as they only detect
failures in specific settings, and would therefore result in miss-
ing faults (False Negatives). Profiling approaches to proactive
outage prediction involve the “run-time analysis of metrics”
such as memory, CPU usage, and latency to identify pat-
terns of irregular behavior using supervised and unsupervised
learning models. Supervised models [13], [14] require a large
number of labeled samples, which is an inherent drawback
given the sparse nature of outages in practice. Unsupervised
models [15], [16] estimate forecast distributions one period
ahead of a metric or group of metrics. If the probability of
a new data point is higher than a predefined threshold, it is
considered an anomaly. In this work, we build upon the use of
unsupervised models; to improve the learning of rare outage
events without labels, we treat the outage prediction problem
as a “rare or extreme” event probability forecasting task

In the event of an outage or predicted outage, it is beneficial
to identify the root cause to enable efficient triaging and

quick remediation. Many advanced fault localization tech-
niques depend on the notion of causality. Bayesian networks,
which model the causal structure among alerting signals and
how these signals lead to outages, have been proposed to
support root cause analysis in cloud systems. For example,
AirAlert [13] is an intelligent outage management system
that models dependencies between different metrics using co-
occurring alerts. A supervised learning model predicts outages
as a function of the alert graph and uses the alert graph to diag-
nose the root cause. Other recent papers have applied different
methods for inferring the causal structure in multidimensional
data [17], [18], [19]. However, these works do not focus on the
distributed setting whereby a single application is composed
of numerous microservices each running their own processes
and communicating via lightweight APIs [20].

In a real-world system deployment, each instance of a mi-
croservice generates performance indicators (e.g., throughput,
latency, utilization, etc.) and hence metrics of a microservice
would include the individual metrics of each such instance.
Moreover, the total number of instances varies over time based
on auto-scalar decisions. Off-the-shelf causal structure learn-
ing algorithms cannot handle varying numbers of instances
over time. Thus, naive modeling of the causal structure of such
a system, where the performance indicator of a microservice
is the average of the metrics of all its deployed instances,
does not perform well. To estimate the causal relationship
between the application-level and the component-level metric
data, we used a modified version of Fast Greedy Equivalent
search (fGES) [21], which is suitable for continuous data.

B. Visualizing Program and Cloud Computing Behavior

To handle the massive amount of multivariate temporal data
commonly produced by cloud systems, SREs require more
analytical support in monitoring tools to increase efficiency.
Recent visual analytics (VA) tools for the management of
cloud computing systems have focused on integrating analysis
algorithms. Xu et al. [22] leverage an anomaly detection algo-
rithm to monitor the performance of cloud computing systems.
Their system visualizes detailed performance data associated
with anomalous metric results using horizon charts and line
charts to support correlation analysis. Similarly, Lv et al. [23]
propose a visual analytics system that uses different anomaly
detection algorithms to enable domain experts to extract
anomalous evolution partners in cloud system monitoring data.

While these approaches integrate analysis algorithms, they
are limited to anomaly detecting and do not compute the
impact of anomalies on the system behavior, i.e., will the
anomalous behavior result in an outage? They are also limited
to correlation analysis and do not support models of causal
inference necessary for root cause analysis. Our visualization
dashboard, ViSRE, integrates a predictive model to support the
proactive management of cloud systems. The model quantifies
the impact of anomalous behavior on the system by computing
the likelihood of an outage due to the behavior. To aid in causal
inference and provide greater interpretability to the predictive
model, the system also integrates a causal model.



Similar to cloud monitoring approaches, current visual-
ization tools tend to focus on specific data, i.e., logs [24],
[25], metrics [22], and code change data [26], thus requiring
SREs to repeatedly switch contexts while debugging. Research
into cloud monitoring tools has proposed more integrated
monitoring systems to minimize data redundancy and system
overhead [27]. While these tools provide a unified approach by
connecting to different data sources, they either propose simple
aggregation approaches based on timestamps and custom
queries that do not significantly reduce data complexity [5], or
new architectures that can be challenging to implement [27]. In
this work, we develop an integrated visual analysis dashboard,
ViSRE, that enables monitoring of the cloud system within a
single view by aggregating data from pre-existing monitoring
systems. ViSRE uses various models to provide a prioritized
visualization experience of cloud system activities; the models
filter out superfluous information and focus on issues requiring
attention, such as code changes that contribute to outages.

C. Visualizing Causality Chains

Visualizing causal relationships of cloud metrics is crucial
to outage remediation as the process of performing root
cause analysis is inherently chaining cause and effect. Judea
Pearl proposed visually depicting causal model structures
using directed acyclic graphs (DAGs) [28]–[30], where the
nodes represent variables and the directed edges represent the
relationships between them. In recent work, DAGs have gained
popularity as a way of visualizing causality [31]–[34]. Further-
more, visualization research proposes the use of interactivity
and animations [35]–[37] to model temporal aspects of data.
However, frame-by-frame visualizations and animations often
create a high cognitive load [38], which is undesirable in time-
critical tasks, such as outage remediation characterized by
high volume multivariate data. To visualize causality chains,
Elmquist et al. proposed the use of Growing Polygons [35],
which enhance the node representations on DAGs to depict the
flow of information in a system using age rings in the polygon
interiors. This approach assigns specific colors and sectors to
each process within the polygon. Although the visualization
depicts the temporal flow of causal data, it relies on a closed
system where one process directly sends a message to another.
However, in cloud systems, metrics and their dependencies are
continuously updated. Our work similarly proposes a novel
enhanced node representation for DAGs by directly encoding
the time series for raw and predicted values into the nodes.
The node glyph captures the intuitive temporal relationship
between the raw metric data and the model predictions. Using
this enhanced node representation, a user can quickly infer
various aspects of the temporal causality (i.e., lags).

III. SYSTEM DESIGN REQUIREMENTS

We conducted this work in collaboration with SREs at a SaaS
(Software-as-a-Service)-based company that operates several
large, cloud-based businesses with interdependent services
and complex infrastructure. SREs monitor system availability,

latency, and performance efficiency, and are primarily respon-
sible for identifying and mitigating system errors before they
severely impact critical client services or result in outages.

We conducted formative interviews with two SREs who de-
scribed their general process to manage and remediate outages.
The SREs stated that the current monitoring pipeline (1) is
reactive, meaning that current monitoring systems often issue
an alert once an error has already occurred, (2) uses manual
alerting that requires domain knowledge, and (3) often results
in missing faults (False Negatives) or generating too many
alerts (False Positives). The SREs also noted that, in the event
of an outage, the main operational challenges for root cause
analysis were the data complexity, which required SREs to
(1) correlate numerous metrics with complicated dependencies
and (2) frequently context switch between various monitoring
dashboards. Based on these interviews, we identified a set of
five design requirements (R1-R5) for the proposed system to
address the operational challenges faced by SREs.

R1 Proactive: Support real-time monitoring of cloud met-
rics for proactive outage detection. The SREs noted that
current alerting approaches for outage management are reac-
tive, thus requiring SREs to fix failures after they have started
to impact users. SREs sought a more proactive approach to
allow for the resolution of potential outages before they lead
to a degraded user experience. To support proactive mainte-
nance and error remediation, the system should fetch real-time
system health metrics from multiple monitoring databases and
integrate algorithms that proactively monitor the metrics for
anomalous behavior to predict the likelihood of an outage
before it occurs, allowing for sufficient remediation time.

R2 Unobtrusive: Have a low false-positive rate for outage
detection. To increase the system’s effectiveness and improve
user trust, the systems should have a low false positive rate to
reduce the level of disruption from unnecessary alerts.

R3 Unified: Reduce context switching during error re-
mediation. To facilitate the timely remediation of errors and
minimize context switching, the system should aggregate data
from different data sources into a coherent interface.

R4 Insightful: Provide interpretable & actionable insights.
The system should provide interpretable insights by relating
model predictions to the raw metric values. The system should
also relate outage forecasting data to auxiliary information
such as code change data to enable more actionable insights in
the event of a predicted outage. Individual probabilistic outage
predictions from the the predictive model do not provide
sufficiently actionable information and do not simplify the
dependency-tracing task necessary for root cause analysis and
remediation. Thus, for the system to be insightful, the SRE
needs to be able to relate the predictions to their root causes.

R5 Interactive: Enable interactive exploration of the raw
data, auxiliary data, and model. To enable users to effec-
tively analyze the outage prediction and root cause analysis,
the system should incorporate interactive visualizations that
provide drill-down features and additional details on demand.



Fig. 1. An overview of the model pipeline for ViSRE: Given time series data for monitoring metrics, the system includes (1) a data processing and label
generation step, (2) a Multi Task Learning prediction model using a classifier and mixture Gaussian network, and (3) a vote-veto change attribution model.

To satisfy these system requirements, we propose a unified
visual analysis dashboard for proactive cloud outage manage-
ment: ViSRE. ViSRE includes a data fetching component, a
data processing component, a multi-task learning (MTL) com-
ponent, a change blame component, and a visual analysis dash-
board (Fig. 1). ViSRE fetches real-time system health metrics
from multiple monitoring tools and databases (R3: Unified).
This raw data is pre-processed before being passed to a Bi-
LSTM model for outage prediction (R1: Proactive). To reduce
the rate of false positive alerts, the model computes outage
probabilities based on user-defined outage thresholds (R2: Un-
obtrusive): the more conservative the estimates the fewer the
alerts. In the event of a predicted outage, ViSRE performs
initial diagnostics by relating the outage event to auxiliary
code change information; such diagnostics provide insights
that the SREs can then use to take action such as rolling
back the code change (R4: Insightful). The model predictions
and raw data are then fed into a visualization dashboard that
provides visual displays of the raw metric and model data in a
manner that supports analysis by the SREs (R5: Interactive).
In addition, we augment the predictive information generated
by the model with the output of a causal model to support root
cause analysis. To design ViSRE, we leveraged an iterative
design process, and considered various design alternatives for
displaying the causal and predictive model output as well as
the raw metric data; the design of the ViSRE dashboard and
our design alternatives are discussed in Section V.

IV. MODELING

Effective outage prediction aims to determine whether an
outage will occur in the future based on the current state
of the monitoring metrics for the system. Once an outage
has been predicted or observed, SREs perform root cause
analysis (RCA) to identify the fault that caused the outage [1].
Effective proactive fault management systems must combine
both outage prediction models to preemptively identify possi-
ble outages and diagnostic tools that facilitate immediate RCA
based on the current and predicted state of the system. To sup-
port these two tasks, our proposed system, ViSRE, integrates
an outage prediction model for proactive fault management
(R1: Proactive), as well as causal and code change blame
models for diagnostics and insight generation (R4: Insightful)
into a single fault management system.

A. Bi-LSTM Model for Outage Prediction

The outage prediction model aims to predict the probability
that an outage will occur at time t, given the time series of N
monitoring metrics: Pr(Ot|Mt). In this notation, M ∈ RN∗T
is a multivariate time series representing N metrics for T
time steps. Ot is the outage sequence where each binary value
indicates whether an outage occurred at time t.

In most operational cloud systems, outages rarely take place;
thus, there are limited positive outage labels in existing cloud
system data. To reliably model tail risk to predict rare outage
events, we treat the outage prediction as a rare and extreme
event probability forecasting task. The model input consists
of metrics that define system health for a service (e.g., outage
alert metrics and key performance monitoring metrics). The
model learns the distribution of the metrics to forecast the
future probability of an outage based on user-defined thresh-
olds. We leverage the domain knowledge of SREs to identify
the relevant system health monitoring metrics from all the
metrics defined for a service. We then train the model using
data samples from metric monitoring tools over three months,
sampled in five-minute intervals. We pre-process the data into
time series by performing linear imputation for missing values
and removing rows with missing data. The data we collect can
predict outages at either an instance-level or a service-level.

However, instance-level data raises several implementation
challenges as instances have a variable life span ranging from
one day to more than a month, resulting in dimensional incon-
sistency in the data. To address the dimensional inconsistency,
we perform service-level aggregation by computing averages
across the instances for each metric at each time step. This
aggregation relies on the assumption that the majority of the
instances at a particular time can be assumed to be random
samples drawn from the distribution.

An additional data challenge occurs because outage event
sparsity leads to a data imbalance problem since there are few
to no positive labels for training. Current manual intervention
approaches further suppress the outage tail events either by
preventing them from happening or quickly resolving them
before they have a disproportionate impact. To suppress the
influence of the manual intervention on the training data,
we generate training labels during the data preprocessing
step using quantile-based thresholds that act as proxies for
tail events. The system recommended threshold is the 95th



percentile of values; however, this threshold can be adjusted
based on expert knowledge of Service Level Agreements.

We utilize a Bi-LSTM to model the tail distributions for
outage prediction. RNN models like LSTMs and Bi-LSTMs
have been shown to outperform conventional methods in time
series modeling [39]. The model is comprised of a Bi-LSTM
sequence model followed by a Classification layer and a
Mixture Density Network (MDN) layer. The classification
layer uses the binary classification labels generated during
pre-processing, and optimizes a Binary Cross-Entropy (BCE)
loss [40] and a variation of BCE loss for extreme event
forecasting called Extreme Value Loss (EVL) [41], [42]. In
this notation, N is the size of the batch, y ∈ 0, 1 is the true
value of the label and ŷi is the value predicted by our model:

LBCE = − 1

N

N∑
i=1

yi ∗ ŷi + (1− yi) ∗ log(1− ŷi) (1)

For the EVL, β0 is the proportion of normal events in the batch
and β1 is the proportion of extreme events in the dataset. We
use γ = 2 for the experiments:

LEV L = − 1

N

N∑
i=1

β0 ∗
[
1− yi

γ

]γ
ŷilogyi

+ β1 ∗
[
1− 1− yi

γ

]γ
(1− ŷi)log(1− yi)

(2)

The MDN combines a Deep Neural Network (DNN) and
a mixture of distributions. The DNN is used to learn the
mixture parameters (µ, σ) and the mixing coefficient α. The
Gaussian mixture model is capable of modeling any arbitrary
probability distribution [43]. Formally, c denotes the index
of the corresponding mixture component, α is the mixing
parameter, D is the distribution to be used (in our case
Gaussian), and λ denotes the parameters of the distribution
D; µ(x), σ(x) in our case.

p(y|x) =
C∑
c=1

αc(x)D(y|λ1,c(x), λ2,c(x), ...) (3)

The MDN layer utilizes the forecast values of the metrics
as labels and optimizes the mean negative log-likelihood of
y given the mixture parameters, where R corresponds to the
realm of possibilities:

argmin
θ

l(θ) = − 1

|R|
∑
x,y∈R

logp(y|x) (4)

During training, losses are optimized simultaneously to predict
the distribution of metrics k time steps ahead. The model
achieves multitask learning where the MDN loss optimization
enables learning of predicted distributions; the binary opti-
mization enables learning of the tail and non-tail classification.
Using the forecasted distribution of the metrics, we can
compute the probability of the outage based on any thresh-
old queried by the user. The probabilistic outage prediction
provides greater interpretability than the binary labels.

B. Bayesian Causal Network for Root Cause Analysis

Outages in cloud systems are often associated with multiple
alerting signals. In the event of an outage, the primary infer-
ence task performed by SREs is root cause analysis (RCA).
The goal of RCA is to establish the causal relationship between
various alerting signals in order to infer the proximate and
ultimate causes of the outage. Typically this inference task is
performed manually by correlating the time-series information
of the alerting signals. However, as the number of alerts and
dependencies increases, manually correlating the time series
becomes intractable. Within the proactive outage management
pipeline, the probabilistic prediction is insufficient for causal
inference and RCA. To aid in inference during root cause
analysis, we use a Bayesian causal network to model the cause
and effect relationships between alerting signals.

The Bayesian causal graph for a microservice is a directed
graph where nodes are metrics, and a directed edge between
two metrics represents the causal relation. In the event of
an outage, the Bayesian model can be used to identify the
root cause directly by calculating the conditional dependence
between an alerting signal and an outage. However, in ViSRE,
we do not directly compute the conditional probabilities;
instead, we use the inferred causal model to support visual
analysis of the causal relationships between metrics during
predicted, as opposed to observed, outages.

To infer an instance-level Bayesian causal graph we modify
the Fast Greedy Equivalence Search (fGES) algorithm [21].
fGES is a modification of the Greedy Equivalent Search (GES)
algorithm designed for discovering directed acyclic graphs on
random variables from sample values [44], [45]. GES heuris-
tically searches the space of all causal Bayesian networks and
returns the model with the highest Bayesian score. The GES
computation consists of two phases starting from an empty
graph: a forward and backward phase. In the forward phase,
directed edges are added iteratively until no addition increases
the score. In the backward phase, edges are removed until no
edge removal can increase the score. fGES is a parallelized
version of GES, where the scores for each fragment of the
causal graph are cached to optimize the computation. Building
a causal graph at the instance level can be tricky due to the
changing number of instances, so we use domain knowledge
to reduce this complexity. Since a load balancer distributes the
workload evenly to all the instances of a service we studied,
we assume that instances are IID conditional on service level
workload. This assumption reduces complexity because we
can consider data generated by different instances as random
draws from the same distribution. We use a service call graph
to create a list of prohibited edges which is used in fGES.
We use penalized Bayesian Information Criterion (BIC) as
the score function for graph structure detection. We modify
the BIC-based score by running a pooled regression model of
xijt on parent metrics, P(xijt). Formally, the score function is
defined as follows, where, L is the likelihood function, ρ is a
penalty term for the graph complexity, k number of parameters
in fi, and ni is the number of observations in the pooled data.



We found ρ = 2 to be optimal in our experiments:

Score(xijt,P(xijt)) =

−2
∑
j,t

log (L(fi(P(xijt))|xijt,P(xijt))) + ρk log ni (5)

C. Change Blame Scoring

One of the most common causes of outages in cloud systems
is code changes [46]. Typically, to identify which code change
is responsible for an outage, engineers manually correlate
changes from a version control system to trends in the system
health metrics. However, cloud system change histories are
often comprised of a large number of entries, thus making it
difficult and time-consuming to identify the code change that
is most relevant to an outage during debugging.

To address this challenge, our modeling pipeline uses pre-
dicted outages and deployment event data to find the code
change most responsible for the outage. Based on the approach
proposed by Li et al. [11], the model uses a vote-veto approach
to establish the top-k changes responsible for an outage
alert. The model uses four different time windows (1 hour,
24 hours, 72 hours, and the difference between deployments
and the latest data points). The model relates the predicted
outages to change events deployed in the time windows by
performing a vote-veto computation. Any predictions made
after a deployment event votes for the deployment event,
while predictions before the deployment event vetoes it. The
vote-veto scores are aggregated based on the equations below,
where a represents the outage alert, c represents the change,
WD represents the four different time windows, Pi represents
the vote score for the ith time window, B represents the veto
score, k refers to the different outage alerts predicted over the
time window, and wi refers to the weight of the time widows
which are weighted exponentially in decreasing order from w1

to w4. The top three scored changes from the lists of changes
blamed are made available to the users.

Pi =
∑
k

V (a, c|WDi)

B =
∑
k

V (a, c|WD−1)

Score(a, c) =
∑
i∈[1,4]

wilog
(Pi −B + 1

B + 1

) (6)

V. VISRE: A PROTOTYPE DASHBOARD FOR PROACTIVE
CLOUD COMPUTING AND FAULT MANAGEMENT

The user interface is comprised of three functional views: the
Parameter Interaction View (Section 5A), the Temporal View
(Section 5B), and the Auxiliary Data View (Section 5C). We
followed an iterative design process, and considered various
design alternatives for displaying the causal and predictive
model output, as well as the raw metric data which we updated
based on feedback from SREs. We detail the design alterna-
tives considered in the temporal view section (Section 5B).

A. Parameter Interaction View

The Paramemter Interaction View (Fig. 2B) allows users to
select a threshold value for each metric. The model (Sec-
tion 4B) uses these thresholds to compute the likelihood of
an outage. The selection of meaningful thresholds is critical
to the effective operation of the outage prediction models.
Setting thresholds that are too liberal would result in an
increased false-positive rate; while, setting thresholds that are
too conservative may result in a high false-negative rate.
Additionally, threshold values that are too conservative would
not allow for enough time to remedy errors. Typically, SREs
rely on analysis of past trend data to set these thresholds.

To help SREs decide how to set the threshold values, we
visualize boxplots in the configuration drawer that show the
distribution of metric values based on past data (Fig 2B). The
minimum and maximum value of each metric over the most
recent two week data collection period are presented on either
side of the box plot. This visualization enables the SREs to
quickly infer the typical distribution of values for the metrics.
The default values presented to the users before they adjust
them are the current thresholds defined for the metrics in the
SREs’ existing monitoring tools. The threshold values can be
adjusted using a slider directly below the boxplot. This slider
is on the same scale as the boxplot to enable the SRE to reason
about their chosen threshold value relative to the distribution
of raw metric values. Updating the thresholds updates all
visualizations in the Temporal Data View.

B. Temporal Data View

The Temporal Data View (Fig. 2C-F) consists of three visual-
izations of the temporal metric and model data: a directed
acyclic graph (Fig. 2C) that visualizes the causal relation-
ships between metrics with node enhancements (Fig. 2D) to
show the raw and predicted values for that metric, a horizon
chart (Fig. 2E) that visualizes the raw values for each metric,
and a probability overview chart that visualizes the overall
likelihood of an outage (Fig. 2F).

(1) Directed Acylic Graph: Root cause analysis requires
reasoning about events in a sequential manner. To perform
root cause analysis, typically, SREs manually correlate metric
information using such time series visualizations and queries.
Manual correlation is time-consuming and relies on expert
knowledge of dependencies, which hampers debugging efforts.
Although the space-efficient color-coded representations of
horizon charts can make metric correlation easier to infer, the
correlations are not sufficient to infer causality. A visualization
that effectively supports root cause analysis should enable the
quick identification of causal direction and dependencies.

Motivated by prior work [47], we use a top-down sequential
ordering of a directed acyclic graph (DAG), as this visually
represents the parent-child relationship between metrics with
the relative node positions (Fig. 2C). During the initial design
phases, we used a simple DAG to visualize the causal relation-
ship. To conserve the display space, we directly encoded the
results of the predictive model onto the metric nodes. Since
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Fig. 2. The ViSRE interface includes five components: (A) The code change timeline; (B) The threshold configuration drawer; (C) The causal metric directed
acyclic graph with (D) enhanced node glyphs showing the raw and predicted values in two half arcs; (E) The horizon charts of the raw metric values with
an interactive bounding box corresponding to the region visualized in the causal graph; (F) The probability overview chart for long-range values with an
interactive bounding box corresponding to the region visualized in the horizon chart. In this example, metric glyphs on the causal graph show increased load
and error count and reduced user satisfaction (#apdex) in a 30-minute analysis interval. At the beginning of the analysis period, the grey color in the left half
of the #apdex node glyph indicates an anomalous metric value. The outage prediction value on the right half of the #apdex node indicates that an outage
is likely within 30 minutes. Hovering over a region of high outage probability in the glyph generates the code change timeline (A). Later in the analysis
period, a spike in server errors (#5xx) results in an outage, visualized in the left arc of the #5xx glyph that transitions from blue to red. The probability
overview chart (F) shows a period of high outage prediction around June 26th; brushing this region updates the horizon chart to visualize the corresponding
metric values, which show extended periods of threshold violation for client errors (#4xx) interspersed with shorter periods for server errors (#5xx).

the predictive model values have a temporal component, we
used a frame-by-frame animation to display the values along
with a timeline to highlight periods of high outage prediction
probabilities. However, SREs noted that keeping track of
the metric incidents in individual frames was challenging;
therefore, encoding the temporal component directly into the
causal graph would be beneficial. Based on this feedback from
SREs, we designed an enhanced node representation for the
DAG to support (1) reasoning about the temporal aspects of
the data, i.e., lags and causality chains with minimal frame
changes, and (2) reasoning about the context between the
predicted and the raw values. We designed a donut-based
glyph that directly encodes the temporal aspect of the raw
and predicted values onto the DAG nodes (Fig. 2D).

Implementation: To render the DAG we used the Sugiyama
Layout algorithm [48] implemented in D3, which assigns each
node to a vertical position with edges directed downwards.
To provide the raw data context for the model predictions,
the node glyph directly encodes both metric time series data
and model-predicted data by visualizing them in the two half
arcs surrounding the node. The most recent prediction value is
presented in the text at the center of the node, additional past

data is provided in the arcs, and time labels are provided at the
start and the end of each arc to communicate the time intervals
represented by each. Each half arc contains smaller equal-
angled arcs that represent equal-sized time intervals. The size
of each arc can be adjusted to support the display of data at
varying levels of time granularity. Reading the arcs clockwise
the first half arc represents the raw data for the metrics over a
t1 to tk time interval (i.e., in Fig. 3A from 3:00pm to 3:25pm).
The color scale for the raw data arc is the same as the color
scale on the horizon chart. For each time interval t, the model
predicts the likelihood of an outage 30 minutes into the future
at time t+30, thus every raw value at time t corresponds to a
predicted value at time t+30. The second half arc corresponds
to the predicted values for the outage in the upcoming t1+30
minutes to tk+30 minutes time interval (i.e., in Fig. 3A from
3:30pm to 3:55pm). The color scale for the predicted values
arc is the same as the color scale for the probability overview
chart. Each predicted value in the second half arc corresponds
to the diametrically opposed raw value in the first arc.

Interaction: Hovering over the smaller arcs in the predicted
value arc animates the corresponding raw value by increasing
its size relative to the other values (Fig. 3). Additionally, hov-



ering over the arcs updates the text at the node center to show
the predicted value for the hovered arc. To support inference
into how the raw values and predicted values are related across
the metrics all nodes in the graph are linked; thus, if a user
hovers over a region in one node, the corresponding predicted
and raw values in all other nodes are animated (Fig. 2C).
The default view of the glyph is the lowest level of drill-
down which shows a 30-minute raw data interval and the
corresponding 30-minute prediction interval that corresponds
to the predictive window of the model (Fig. 3A). However, if
users are interested in observing longer time periods the glyph
supports varying degrees of time granularity (Fig. 3B-C).

(2) Horizon Chart: One of the most important factors for
understanding the overall health of the system is to monitor
the raw values of multiple metrics simultaneously. During this
process, SREs leverage their knowledge of the standard system
behavior to specify acceptable thresholds for the metric values.
When designing this visualization, we considered four design
alternatives to display the metric data: individual plots, small
multiple-line charts, multi-line plots, and horizon charts.SREs
primarily use metric visualizations to (1) establish the pe-
riods during which metric values exceeded their respective
thresholds and (2) correlate different metric values to establish
a precedence relationship. Thus, SREs require visualizations
that support the quick identification of threshold breaches and
enable faster metric correlation.

We took these requirements into account when considering
our design alternatives. While the level of detail in the large,
individual metric plots supported anomalous value inference,
the visualizations took up a lot of space; thus, they did not
effectively support metric correlation as the SREs needed to
scroll back and forth to compare the metric values. Although
more space-efficient than individual plots, multi-line plots did
not enable either the quick inference of threshold breaches
or metric correlation as the graph was cluttered and difficult
to read. Additionally, the order of magnitude variation in the
metric values led to scaling issues that made it difficult to
decipher the individual values of some metrics. Small multiple
plots, although space-efficient, did not support the inference of
threshold breaches due to their diminished size and resulting
lack of detail. We therefore chose horizon charts [49] for their
space-efficient characteristics and improved distinguishability
of values, in order to easily represent all metric values in a
single interface without scrolling (R3: Unified). Furthermore,
we utilize the user-defined thresholds to compute the color
encoding in the horizon chart; this color encoding enables
users to quickly identify time periods with anomalous values.

Implementation: Values are represented using a diverging blue-
white-red color scale to differentiate values that diverge from
the user-defined threshold. While the values for anomalous
behavior relative to the threshold varies for each metric, in
general, the horizon chart can be read as follows: the midpoint
of the color scale (white) corresponds to the threshold value,
blue indicates normal patterns and red indicates anomalous
patterns; the greater the color salience the greater the degree

to which the pattern violates or conforms to a threshold
condition. We leverage D3’s cubism.js plugin [50] in order
to properly handle real-time streaming data in cases where
the user is not actively performing analysis on past data.

Interaction: A black bounding box is overlaid on the horizon
chart to show users the time period of data that is visualized on
the causal graph (Fig. 2C). Users can interactively move this
bounding box to update the time period on the causal graph.

(3) Probability Overview Chart: SREs emphasized the need
for visualizations at varying levels of granularity to support
drill down (R5: Interactive). A visualization at the highest
level of granularity was required to (1) provide a summary of
the state of the system, (2) support inference of longer-term
predictive model trends, and (3) facilitate the quick identifica-
tion of the temporal distribution of outage prediction values.
To aid in these tasks we designed a probability overview
chart (Fig. 2F) that displays the aggregated distribution of
the prediction values. During the initial phases of design, the
probability chart was visualized using a simple line graph.
However, due to space constraints that limited the size of
the graph and the corresponding axis, the line graph did not
adequately support the discovery of distinctive patterns and
outliers in the predicted values. We updated the probability
graph to a binned heat map visualization, where the color
encoding can better enable the user to quickly identify periods
with high predicted probability of an outage.

Implementation: The probability overview is implemented
as a binned heat map [51], [52] and visualizes aggregated
prediction values as fixed-width, vertical ticks, the size of
which can be increased or decreased to show a smaller or
larger time frame. To support the display of a longer time
frame relative to the horizon charts, we set the tick width to
accommodate two weeks’ worth of data by default. The hue of
each tick encodes the probability value. Ticks are colored using
a sequential single-hue color scale. Low probability values
correspond to lighter colors, while high probability values
map to darker colors. We aggregate the probability values
represented in the chart by selecting the maximum value of
the predicted outage across the seven system health metrics
visualized in the system at five-minute time intervals.

Interactions: The probability overview displays two weeks of
data. The horizon chart and causal graph are visually scalable
to support varying levels of drill down and enable the identifi-
cation of lags in the causality chains. By default, the horizon
chart displays four days of metric data, but can display up to
two weeks by adjusting the brush on the probability overview.
The causal graph can visualize up to six hours of metric and
prediction data, but displays 30 minutes by default; the bound-
ing box on the horizon chart shows the time period visualized
on the causal graph and can be updated interactively.

C. Code Change Timeline

In the event of a predicted outage, the modeling pipeline uses
a vote-veto mechanism to identify the code changes that most
likely caused an outage. For each time period where there



Fig. 3. Enhanced node glyph visualizing multiple time periods. (A) The default 30-minute view where 30 minutes corresponding to the raw data values (on
the right), and 30 minutes corresponding to the predicted metric values (on the left); this view can be read similar to a clock. (B) one hour or (C) six hours.

is a high predicted probability of an outage based on the
value of each metric, users can view the timeline detailing
the related code change by hovering over the high prediction
region in the DAG nodes. The code change timeline view
contains the timeline visualization of the code change data. To
aid users with remediation, a tooltip with detailed information
on the code change such as the timestamp, the code change
ID from the version control system (VCS), and the model
assigned change score are also visualized on the timeline. The
timeline visualization is a nonlinear timeline where values are
spaced out evenly, instead of a real-time timeline to support
a more compact representation. A similar approach was used
by [26] to visualize the code change history. We color the
change marker on the timeline and the tooltip based on the
model assigned change score, which represents the degree to
which the outages were likely caused by the code change. Red
indicates that the code change is most likely responsible for the
outage, orange indicates it was somewhat likely responsible,
and green indicates it was the least likely responsible.

VI. EVALUATION

We evaluated the proposed algorithmic solutions quantitatively
and performed user studies on the ViSRE UI with six SREs.

A. Data Preliminaries

We used performance data from a cloud microservice to train
and evaluate the models and perform user studies. The outage
prediction model and the causal model were trained on three
months of data. The prediction model was tested on one month
of data. We used two weeks of the test data for the user studies.

B. Quantitative Evaluation

We evaluate the performance of our proposed outage predic-
tion algorithm through three experiments. In the first experi-
ment, we compare the accuracy of our proposed approach, Bi-
LSTM, relative to different Recurrent Neural Network model
architectures: simple LSTM, stacked LSTM, and stacked Bi-
LSTM. In the second experiment, we compare the proposed
multitask learning model, a Bi-LSTM with MDN and Classifi-
cation Layer trained with either Binary Cross Entropy loss (Bi-
LSTM MTL + BCE) or Extreme Value loss (Bi-LSTM MTL
+ EVL), to Bi-LSTM models with either a Mixture Density
Layer (Bi-LSTM MDN) or a classification layer (Bi-LSTM
Classifier). In the third experiment, we show the proposed

TABLE I
THE AUC SCORES OF THE PROPOSED OUTAGE PREDICTION MODEL

(BI-LSTM MTL) ACROSS THREE QUANTITATIVE EXPERIMENTS.

Experiment 1 5 minutes 15 minutes 30 minutes

Bi-LSTM 0.974 0.968 0.959
LSTM 0.950 0.950 0.948
Stacked LSTM 0.961 0.925 0.914
Stacked Bi-LSTM 0.956 0.933 0.918

Experiment 2 5 minutes 15 minutes 30 minutes

Bi-LSTM Classifier 0.909 0.930 0.927
Bi-LSTM MDN 0.967 0.956 0.951
Bi-LSTM MTL + BCE 0.982 0.976 0.972
Bi-LSTM MTL + EVL 0.981 0.977 0.975

Experiment 3 95 97 99

Bi-LSTM MTL + BCE 0.982 0.972 0.962
Bi-LSTM MTL + EVL 0.981 0.974 0.960

model trained on 95 percentile thresholds generalized to 97
and 99 percentile thresholds, indicating that the distribution
learned by the MDN can be used for an arbitrary user
threshold. Detailed AUC scores for each model can be found
in Table 1 with summaries of the results presented below.

Experiment 1: Different RNN architectures. The bi-
directional LSTM (Bi-LSTM) performs better than simple
LSTM with 0.967 AUC as compared to 0.949 AUC, on
average. The stacked LSTM and stacked Bi-LSTM models
perform worse than Bi-LSTM model due to overfitting with
an average AUC of 0.933 and 0.936 on average respectively.

Experiment 2: Different Models. The addition of a Mixture
Density Layer to the classifier improves the performance from
an average AUC of 0.922 to 0.977. The addition of a classifier
layer to the MDN model helps learn the tail of the distribution,
thus improving average AUC from 0.958 to 0.977. Models
trained using EVL loss and BCE perform similarly.

Experiment 3: Different Percentile Thresholds The model
trained on a 95 percentile threshold adapts to higher percentile
thresholds of 97 and 99, achieving an AUC of 0.972 and 0.962
respectively for the model trained with BCE loss, and 0.974
and 0.960 for the model trained with EVL loss function.



C. Qualitative Evaluation

We performed semi-structured user studies with six SREs (E1-
E6) to evaluate the effectiveness of ViSRE for proactive
outage prediction and root cause analysis. In place of a longer
follow-up study using live outage data, we performed this
preliminary user evaluation by asking participants to walk
through a usage scenario that depicted data from a prior outage
event (Fig 2). Each session lasted approximately 45 minutes.
The first 15 minutes were used to describe the system, during
which time we provided a high-level overview of the models
(purpose, input, and output), the data (seven system monitoring
metrics of a cloud microservice), and an explanation of the
visualizations. In the remaining 30 minutes, participants were
provided with a link to ViSRE and were asked to perform tasks
such as identifying causality chains, anomalous metric values,
and the likelihood of an outage. We selected the task questions
to reflect a variety of analysis tasks that might arise during
outage remediation. Once participants finished responding to
the structured questions, they were asked to provide general
feedback on the usability of the system.

(1) Overall System Utility: Several SREs noted that the model
predictions were particularly helpful; for example, E3 noted
that “Predictions can allow for future planning and course
correction in the event of an error before they negatively
impact users” (R1: Proactive). The SREs also unanimously
noted that the code change integration was useful for reducing
context switching (R3: Unified) and to cut back on labor spent
in identifying problematic code changes (R4: Insightful). E4
explained that “If it can directly tell the commit, we can just go
and roll back that commit and the outage is over in a minute.
It can also save man-hours because only the developer who
made the change can go and check the code and not every
developer who has made recent changes to the system”. E1
noted that metric aggregation was also helpful in reducing
context switching: “First I have to go check 4xx and 5xx in
Splunk then I have to go check apdex in New Relic, so having
those metrics in one place is kinda cool” (R3: Unified).

(2) Visualization Dashboard: The SREs generally found the
visualizations in the dashboard were well-rationalized and
satisfied the design requirements outlined in Section III.

Parameter View: E5 noted that the threshold setting mecha-
nism helped them infer the behavior of the model. E6 stated
that the box plot and corresponding slider positioning helped
set meaningful thresholds that balance the trade-off between
too many false positives and false negatives (R2: Unobtru-
sive), while allowing for enough time for error remediation.

Probability Overview Chart: SREs used the probability chart
to brush regions of high predicted outage probability in order
to view the associated horizon chart, which provided more
granular details on the metrics (R5: Interactive). E5 felt that
the “Most helpful [visualization] is the probability timeline”
as it can enable high-level inference of all model predictions
and metrics in the past to identify the “problematic durations”.

Horizon Chart: Overall, four of six participants noted that

the horizon chart was helpful and intuitive. These SREs
found that the horizon charts “provide a clear indication of
the general health of the system” (E2) and are useful for
identifying metrics that violated the user-defined thresholds.
E1 noted that “using the red marks only I can identify a
region of anomalous behavior” (R4: Insightful). However,
some experts (E4 and E6) noted that including support for
a more typical timeline visualization (i.e., a line chart) in
addition to the horizon chart would have been helpful. While
this design was initially considered, it was discarded due to
reduced metric comparability, but may be useful to include
due to the familiarity of the chart type.

Causal Graph: Using the causal graph and the interactions
that it supports, SREs were able to quickly identify the causal
relationships and causality chains between metrics in the
instances where the model predicted a high outage probability;
for example, in the time period represented in Fig 2b, both E1
and E3 identified the Apdex, 4xx, and 5xx causality chain.
Using the two half arcs on the node, the SREs were able to
identify that high values of predicted outages corresponded to
violations or likely violations of thresholds in the raw data.

VII. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Overall, the SREs’ feedback on ViSRE was positive, but there
remain several areas for improvement. For example, E3 noted
that the model-inferred causal structure might be missing some
relationships, and suggested the ability to manually update the
edges in the causal graph. To this end, future work aims to
incorporate graph algorithms that support layout changes and
aim to minimize computational overhead and edge crossings.

Although all SREs could use the system following a short
introduction, some noted that a novice user might struggle
to interpret the visualizations thus ViSRE should include a
tutorial or on-demand tool tips to guide novice users. In the
event of an outage, several SREs noted that it would be
beneficial for ViSRE to infer exactly which service instance
was causing anomalous values. However, our prediction model
performs service-level aggregation to address the dimensional
inconsistency at an instance level. Due to this aggregation, the
model cannot identify which instance is causing anomalous
values, thus limiting its inferential power. Future work aims
to enhance the model to enable instance-level predictions; this
enhancement can be done, for example, by training the model
on the maximum value of instances as opposed to the average.

In the current remediation pipeline, information is spread
across multiple tools; thus, we cannot make one-to-one com-
parisons of ViSRE to a single system. As noted in Sections II
and IV, outages are rare events in healthy operational cloud
systems such as the one we study. Thus, a longer follow-
up study is required to collect sufficient quantitative data to
meaningfully observe user behavior. We aim to present the
results of a long-term quantitative study in future work.
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