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ABSTRACT
In this work, we develop a GraphNeural Network (GNN) framework

for the problem of personalized visualization recommendation. The

GNN-based framework first represents the large corpus of datasets

and visualizations from users as a large heterogeneous graph. Then,

it decomposes a visualization into its data and visual components,

and then jointly models each of them as a large graph to obtain em-

beddings of the users, attributes (across all datasets in the corpus),

and visual-configurations. From these user-specific embeddings of

the attributes and visual-configurations, we can predict the proba-

bility of any visualization arising from a specific user. Finally, the

experiments demonstrated the effectiveness of using graph neural

networks for automatic and personalized recommendation of visu-

alizations to specific users based on their data and visual (design

choice) preferences. To the best of our knowledge, this is the first

such work to develop and leverage GNNs for this problem.
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tems → Personalization; Recommender systems.
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Figure 1: Given a user i and an arbitrary dataset of interest
to them (selected or uploaded by the user), the space of pos-
sible visualizations to recommend are intractable. Despite
this intractable exponential space of all possible visualiza-
tions that can be generated from the users dataset of inter-
est, there is only a very tiny subspace of visualizations that
are relevant and of interest to the user, and typically only
a handful of visualizations have user-feedback (e.g., user-
generated, clicked) for learning the personalized model.

1 INTRODUCTION
Visualization recommendation systems are important for many web

applications including exploratory data analysis and dashboard cre-

ation, among many others. The goal of such systems is to improve

the user experience by providing a set of proper visualizations for

users to efficiently and effectively find important patterns and in-

sights from their data for decision-making, marketing, and so on.

In many cases, these systems allow a user to select or upload a

dataset of interest and then immediately see potentially interesting

visualizations for their given dataset. However, existing work is

all rule-based [42, 43], and thus unable to recommend visualiza-

tions that are personalized to specific users based on the previous

visualizations that they preferred, liked, or generated.

In this work, we focus on the personalized visualization rec-

ommendation problem [28] where we leverage both implicit and

explicit user feedback to automatically learn a personalized model

for each user. Such a model can better recommend relevant visu-

alizations to the user in real-time given any new unseen dataset

of interest. The goal of personalized visualization recommenda-

tion is to learn individual recommendation models for each user.

Then when a user selects a dataset of interest to explore, the specific

https://doi.org/10.1145/3485447.3512001
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model learned for that user can be applied and the top visualizations

that are most relevant and related to them will be recommended.

However, there are several challenges that make it difficult to

provide effective and personalized visualization recommendations.

First of all, users typically have their own datasets that are not

shared by any other user. Therefore, traditional collaborative fil-

tering approaches do not work in this setting. To mitigate this

issue, we introduce a GNN-based framework that leverages the

large corpus of datasets and visualizations from users as a large

heterogeneous graph. Secondly, the complexity of the visualization

space makes this problem even harder. Specifically, for a single

dataset, the set of possible candidate visualizations to recommend

to a user is exponential in the number of attributes in the dataset,

possible design choices (e.g., chart-types, colors, sizes, x/y, etc.), and
so on, making this a fundamentally challenging problem (Figure 1).

Hence, the space of visualizations for one dataset is intractable

already. To make matters worse, there are tens of thousands of

datasets and each dataset is often only utilized by a single user,

or at most a few such users. This makes an already difficult prob-

lem even more challenging to solve since it implies a very limited

amount of feedback per dataset, despite the intractable space of

visualizations. Furthermore, since a visualization consists of both

the particular data attributes used as well as the corresponding

design choices, the visualization is fundamentally tied to a specific

dataset, and therefore, the space of visualizations for one dataset is

completely disjoint from the space of visualizations from another

dataset (Figure 2).

In this work, we develop a Graph Neural Network (GNN) frame-

work called VisGNN for personalized visualization recommenda-

tion. Specifically, given a set of users, their datasets of interest

(where each dataset consists of a set of data-attributes), and the vi-

sualizations that users generated from those datasets, VisGNN first

derives a series of graphs where nodes are users, data-attributes

(from all datasets), and all possible visual-configurations from the

corpus of visualizations. VisGNN encodes the interactions between

users and each of the data-attributes from a visualization of interest

as edges in the graph. Furthermore, VisGNN also derives edges

between users and the visual-configurations that were extracted

from a visualization preferred by that user, and also encodes the

relationship between the visual-configuration and data-attributes

used in the visualization that the visual-configuration was extracted.

Every data-attribute from each dataset is also mapped to a shared

low-dimensional space that enables direct comparison of the data-

attributes across different datasets. We then learn initial feature vec-

tors for every user, data-attribute, and visual-configuration, which

are used as the node features in the initial layer of our GNN. Feature

information is then iteratively aggregated from neighbors and the

aggregated information is then encoded with the existing node

representation during propagation. VisGNN effectively captures

the non-linear interactions between the users, data-attributes, and

visual-configurations, thereby improving the learned representa-

tions, making it possible to infer highly relevant and interesting

visualizations personalized for specific users.

VisGNN derives a user-specific visualization representation by

concatenating all the learned representations that pertain to a spe-

cific visualization, i.e., representations of the user, data-attributes,
and visual-configuration that make up a visualization. We then

Datasets

Location Date Profit (mil.) Visitors (mil.) Category …

Seattle 1/1/22 5 4.7 Jackets …
Seattle 1/2/22 2.8 4.5 Jackets …
Seattle 1/3/22 7.2 2.3 Jackets …
… … … … … …

San Jose 1/1/12 1.1 5.1 Tees …
San Jose 1/2/22 2.8 2 Tees …
San Jose 1/3/22 5 3.4 Tees …
… … … … … …

Visualizations
(for	specific	dataset)

Figure 2: Space of visualizations to score is dependent on the
specific dataset of interest to a user. Hence, given a different
dataset of interest by some other user almost surely leads to
an entirely disjoint space of visualizations to recommend.

learn a non-linear function that maps the user-specific visualiza-

tion representation to a positive or negative class label that encodes

whether the user preferred the visualization or not. In addition to

the few positive visualizations for a given user, VisGNN is also

trained using many negative visualizations, which are visualiza-

tions that a specific user did not find interesting or relevant. Now,

given a new potential visualization for some arbitrary user, the

trained model can be used to accurately infer the probability of the

visualization being interesting or useful for that user. VisGNN is

also general and flexible with many interchangeable components,

making it useful for many different use cases (such as personalized

attribute recommendation). The proposed approach is able to effec-

tively deal with the vast sparsity and cold-start issues that make

this problem impractical using traditional methods. To the best

of our knowledge, this is the first work to develop a GNN-based

framework for personalized visualization recommendation.

There are a variety of different, yet complex implicit and explicit

user feedback that can be leveraged by VisGNN. Since visualization

recommendation systems typically show users visualizations, this

is the most common type of user feedback. In particular, a user

may “like” or “add a visualization to their dashboard”. These are

all examples of explicit user feedback. In contrast, examples of

implicit user feedback include when a user clicks or hover-over a

visualization. However, feedback directly on the visualizations is not

very useful for our problem due to the issues discussed previously.

To overcome these issues, we decompose every visualization into

two parts: the data attributes and the set of visual design choices

used in the visualization, which we call a visual-configuration (Fig-

ure 3). An important detail is that the set of design choices do

not include the actual data-attributes, e.g., if a data attribute from
some arbitrary dataset was mapped to the color or x/y-axis, then

we replace the attribute name with some set of properties such

as whether it is numerical, categorical, and so on (attribute data

type). Decomposing the user-preferred visualization into the data

attributes and visual design choices used in it, enables us to learn

from user feedback. While the user feedback on the data-attributes

used in the visualization does not directly transfer for visualizations
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created from a different dataset, the set of design choices preferred

by the user does, and we can leverage it in our model to recommend

better personalized visualizations for users. In many applications

or tools, there also exist direct implicit and explicit user feedback

on the attributes and design-choices of interest.

Through extensive experiments, we demonstrate the effective-

ness and utility of our approach using a large-scale corpus of 17.4k

users with 94k datasets (2.3 million attributes in total) and 32k

visualizations generated from those datasets. Overall, VisGNN out-

performs a variety of baseline methods. We also perform an abla-

tion study to investigate a few other GNN-based variants of our

approach. Finally, we investigate using the GNN-based approach

for recommending data attributes to individual users based on their

learned preferences.

2 RELATEDWORK
While there has been a lot of work on visualization recommendation,

there has only been a few such works that leverage models learned

from data. Furthermore, none of these works are based on graph

neural networks (GNNs).

2.1 Visualization Recommendation
Traditional user-driven workflow for creating data visualizations

contains stages of selecting datasets or subsets, data attributes,

visualization components and interactions [38]. To lower the bar-

riers of the required visualization knowledge and accelerate this

manual process, several automatic visualization recommendation

techniques have been developed to help choosing the visualization

components and configuring them. Rule-based visualization recom-

mendation systems such as Voyager [36, 43, 44], VizDeck [26], and

DIVE [14] use a large set of human perceptual effectiveness metrics

defined manually by domain experts to recommend appropriate vi-

sualizations that satisfy the rules [2, 7, 11, 17, 21, 22, 31, 32, 34]. Such

rule-based systems do not leverage any training data for learning

or user personalization. There have been a few “hybrid” approaches

that combine some form of learning with manually defined rules for

visualization recommendation [24], e.g., Draco learns weights for

rules (constraints) [24]. Recently, there has been work that focused

on the end-to-end ML-based visualization recommendation prob-

lem [8, 29]. However, the above work learns a global visualization

recommendation model that is agnostic of the user, and thus not

able to be used for the personalized visualization recommendation

problem studied in our work.

All of the existing rule-based [14, 26, 36, 43, 44], hybrid [24], and

pure ML-based visualization recommendation [29] approaches are

unable to recommend personalized visualizations for specific users.

These approaches do not model users, but focus entirely on learning

or manually defining visualization rules that capture the notion

of an effective visualization [4–6, 9, 16, 18, 19, 23, 33, 37, 40, 41].

Therefore, no matter the user, the model always gives the same

recommendations. One recent work called VizRec [25] studied the

setting where there is a single dataset shared by all users, and

therefore a single small set of visualizations that the users have

explicitly liked and tagged, which are then recommended to the

users based on a very simple heuristic approach. This problem is

unrealistic with many impractical assumptions that are not aligned

with practice. More recently, Qian et al. [28] introduced the prob-

lem of personalized visualization recommendation and proposed

an approach capable of solving it. However, that work relied on

a large dense meta-feature matrix to characterize the attributes

across datasets. Further, they do not introduce nor investigate a

graph neural network framework for personalized visualization

recommendation.

100+ attributes

Dataset 
(selected by user)User

Visualization

data-attributes
(used in vis.)

vis-config
(design choices)

Figure 3: Visualizations are decomposed into data-attributes
and design choices (visual-configuration). While visualiza-
tions are dataset dependent, visual-configurations are not.
This approach enables VisGNN to learn from user feedback
across thousands of entirely different datasets.

While most research effort has been focused on recommending

visualization, very few studies work towards the automation of

data attribution selection, which is also a critical step of the visu-

alization creation workflow. Some visualization recommendation

systems, such as SeeDB [37], Voyager [43, 44] and DeepEye [20]

require users to specify interested data variables or query the at-

tributes by keywords before recommending visual configurations.

The selection of data attributes are closely related to personalized

visualization settings, where the importance of attributes may vary

according to users’ roles and exploration behaviors. Therefore, most

of the non-personalized visualization recommendation techniques

fail to support automatic attribute recommendation. Our method

addresses this problem by aggregating the information of visual

configurations and data attributes when training the model, and

predicts the probabilities of each data attributes to be of user’s

interest while making visualization recommendation. As an aside,

dataset search [15] has also been recently explored, see [3] for a re-

cent survey. However, this problem is fundamentally different from

the personalized visualization recommendation and personalized

attribute recommendation studied in our work.
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2.2 Graph Neural Networks
GNNs have been successfully applied to a variety of important ap-

plications including neural machine translation in text [1], content-

based recommendation systems [10, 12, 35, 39, 47], and human-

object interaction detection [27]. We refer the reader to the sur-

vey [45, 48] for a detailed list of GNNs proposed for more an even

wider range of GNN applications. Within these applications, GNNs

provide state-of-the-art results for tasks related to node classifica-

tion, link prediction problems, and graph classification [46]. To the

best of our knowledge, our work is the first one to use GNNs for

visualization recommendation.

3 APPROACH
In this section, we formally introduce our GNN solution to the per-

sonalized visualization recommendation problem: VisGNN. Notably,

given an arbitrary dataset, we recommend the top-k visualizations

personalized for the specific user and their dataset of interest based

on the users previous visual and data preferences.

Given a visualization 𝒱 from user i for some arbitrary dataset

of interest, we decompose the visualization into the set of data

attributes A used in the visualization and the set of visual design

choices (which we also call the visual-configuration, see Figure 3).

We set Ai j = 1 for all data attributes j ∈ A and Cik = 1 for the

extracted visual configuration k (which represents the complete

set of design choices). We also include nodes for the other data-

attributes in the user’s dataset that have not yet been used in a

visualization. Initially, these attribute nodes are not connected to

any other node in the graph. In addition to the two graphs A and C
described above, we also encode the attributesA used in the specific

visual-configuration k using another graph D. More specifically,

D jk = 1 for all j ∈ A and k is the visual-configuration of the

visualization 𝒱 . This approach results in three graphs, encoded by

the sparse adjacency matrices A, C, and D. Given these graphs, we

data attribute vis-configuser

…

Figure 4: Every subgraph shown on the left pertains to a sin-
gle dataset and user. There are many data-attributes from a
users dataset of interest that are not used in a visualization.
These data-attributes are not shown in the above figure for
simplicity. On the right, we see the unified graph.

Aggregate info. from neighbors

+
+

h( ) =
Update graph

Transform info.

Figure 5: VisGNNaggregates embeddings from the neighbor-
ing visual-configurations and data-attributes. The resulting
embeddings are then transformed, stored, and updated for
use in the next layer.

first derive a larger unified graph as follows:

G =

■ A C
A⊤ ■ D
C⊤ D⊤ ■

 (1)

In Figure 4, we provide an example of the resulting unified graph

shown on the right. Notably, the graph shows three users whom

are connected to the visual-configurations (set of design choices)

and data-attributes used in the visualizations that they provided

positive user-relevant feedback. In this graph, there is no notion of

a visualization, however, one can generate a valid visualization by

combining one or more data-attributes with a visual-configuration.

Then, we obtain a low-dimensional rank-d approximation of G
denoted as ϕ(G). Given the large heterogeneous graph G and ϕ(G),
we have a graph neural network layer of the following form:

Hk+1 = f (H(k ), ℓ(G)) (2)

where f is a non-linear function over H(k)
and the graph G. For

the initial GNN layer k = 0, we have:

H1 = f (ϕ(G), ℓ(G)) (3)

where H0 = ϕ(G) ∈ Rn×d . In this work, we use ϕ(G) = U where U
is derived by solving the singular value decomposition of G, that is,
G ≈ Gd ≈ USVT and hence Gd is the best rank-d approximation

of G. The above is only one such possibility of ϕ, as the framework

is flexible with many interchangeable components (hence, ϕ can

be interchanged with any other function over the sparse adjacency

matrix G). In general, H0
can also be any features, or even random

vectors. Hence, they are not required to be dependent on the graph

as H0 = ϕ(G). Furthermore, ℓ can be any function over a graph’s

adjacency matrix such as the normalized Laplacian or random

walk matrix such as ℓ(G) = Q− 1

2GQ− 1

2 where Q = diag(G) the
diagonal node degree matrix of G. Since we also want the model to

include the features of the node itself in the propagation, we simply

G + I where I is the identity matrix. As an aside, note that for the

visualization recommendation problem, we can also set H(0)
to be

the meta-feature matrix of the users, attributes, and so on. Now,
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one simple model is:

f (H(k ), ℓ(G)) = σ
(
ℓ(G)H(k )W(k )

)
(4)

where σ is a non-linear activation function and W(k )
is the weight

matrix of the kth layer. An intuitive example is shown in Figure 5.

Besides the sum aggregator used implicitly in Eq. 4, we can also

leverage other relational neighborhood aggregators in our frame-

work, such as the mean aggregator, LSTM aggregator, pooling ag-

gregator, among many others as well. For instance, the mean ag-

gregator would simply be:

h(k )i = σ
(
W(k−1) · mean({h(k−1)i } ∪ {h(k−1)j , ∀j ∈ N (i)})

)
(5)

More generally,

h(k )i = σ
(
W(k−1) ·

[
h(k−1)i Aggr

(
{h(k−1)j , ∀j ∈ N (i)}

) ] )
(6)

whereAggr(·) is any arbitrary aggregator function [30] andW(k−1)

is the learned transformation matrix. This process is repeated for

every node in our graph.

The model predicts the probability of an edge (u,v) existing by

deriving a score between the representations of node hu and hv
using a function (e.g., an MLP or a dot product):

ŷuv = д(hu , hv ) (7)

We use a binary cross-entropy loss:

L = −
∑

uv ∈D

(
yuv log(ŷuv ) + (1 − yuv ) log(1 − ŷuv )

)
(8)

From the above, we can naturally derive a score for user i on any

arbitrary visualization V by first decomposing it into the visual-

configuration t (set of visual design choices) and the attributes used

r1, . . . , rs . Then, we can easily obtain the probability of each of

these components. For instance, for user i and the configuration

t , we have yit , and similarly, for attribute r we have yir . Given all

these probabilities, we can combine them to get a probability score

for the overall visualization by taking the product. Then, we have

ŷ = д(hi , ht )
∏
j ∈A

д(hi , hj ) (9)

where ŷ is the final predicted score of the visualization for V user

i . Intuitively, a user-relevant visualization V is assigned a high

scorewhen both the probability of the visual-configurationд(hi , ht )
for user i and the probability of each of the data attributes j ∈

A, д(hi , hj ) that can be assigned to the visual-configuration are

high, that is,

∏
j ∈A д(hi , hj ).

In addition, given a user i and a visualization V = (X(k )
i j ,Ct )

to score from some dataset, we can leverage the user-specific em-

beddings learned from our graph neural network to learn another

model that outputs a score for a visualization directly. These are

leveraged by concatenating the embedding of user i , visual config-
uration t , along with the embeddings for each attribute r1, . . . , rs
used in the visualization. More formally,

ψ (V= ⟨X(k )
i j ,Ct ⟩) =

[
ui zt vr1 · · · vrs

]
(10)

where ui is the embedding of user i , zt is the embedding of the

visual-configuration Ct , and vr1 , . . . , vrs are the embeddings of

the attributes used in the visualization being scored for user i . For

Table 1: Summary of the user-level corpus of datasets and
visualizations preferred by users from the web (plot.ly).

# Users 17,469

# Datasets 94,419

# Attributes 2,303,033

# Visualizations 32,318

# Vis. Configs 686

mean # attr. per dataset 24.39

mean # attr. per user 51.63

mean # vis. per user 1.85

mean # datasets per user 5.41

Density (A) <0.0001

Density (C) <0.0001

Density (D) <0.0001

clarity, we use different symbols for each node type, however, each

node has a specific index in H, hence, zt and ht are one in the same.

We leverage the user, visual-configuration, and attribute em-

beddings as input into a deep multilayer neural network with L
fully-connected layers,

ψ (V= ⟨X(k )
i j ,Ct ⟩) =

[
ui zt vr1 · · · vrs

]⊤
(11)

q
1
= σ1(W1ϕ(V) + b1) (12)

q
2
= σ2(W2q1 + b2) (13)

...

qL = σL(WLqL−1 + bL) (14)

ŷ = σ (h⊤qL) (15)

where WL , bL , and σL are the weight matrix, bias vector, and ac-

tivation function for layer L. Further, ŷ = σ (h⊤qL) (Eq. 15) is the
output layer where σ is the output activation function and h⊤ de-

notes the edge weights of the output function. For the hidden layers,

we used ReLU as the activation function. For visualizations that do

not use s attributes, then we pad the remaining unused attributes

with zeros. This approach allows the multi-layer neural network

architecture to be flexible for visualizations with any number of

attributes. Hence, ŷ is the predicted visualization score for user i .
In addition to visualization recommendation, we can also lever-

age our GNN-based framework for many other important related vi-

sualization tasks including personalized design choice recommenda-

tion (e.g., chart-type), personalized attribute recommendation, per-

sonalized visualization-configuration recommendation, and even

personalized recommendation of users with similar visual and data

preferences or interests (e.g., which may be useful for collabora-

tion purposes, among other applications). Besides visualization

recommendation, we also explore using VisGNN for recommend-

ing personalized data attributes for users from some user-specific

dataset of interest. For a user i , the VisGNN model predicts the

probability of a data-attribute j by using the learned representa-

tions of the user i denoted as hi and the attribute representation

hj via a function д (such as MLP or a dot product) as follows:

ŷi j = д(hi , hj ) (16)
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Table 2: Results for Personalized Visualization Recommendation. Our proposed approach, VisGNN, outperformed all of the
baseline models for both the hit ratio (HR) and normalized discounted cumulative gain (NDCG), across all values of k .

HR@K NDCG@K

Model @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

PopVis 0.183 0.224 0.244 0.265 0.290 0.180 0.207 0.216 0.224 0.235

kNNVis 0.116 0.202 0.318 0.406 0.497 0.113 0.162 0.219 0.254 0.288

eALS 0.308 0.419 0.461 0.485 0.498 0.307 0.377 0.399 0.409 0.414

VisGNN 0.684 0.724 0.756 0.786 0.800 0.415 0.530 0.570 0.590 0.598

Therefore, using the above, we can obtain the probability of each

attribute j ∈ A in the dataset of interest to user i , that is, ŷi j =
д(hi , hj ),∀j ∈ A. From the resulting data-attribute probabilities, we

obtain a personalized user-relevant ranking of the data-attributes

for user i .

4 EXPERIMENTS
We design experiments to investigate the effectiveness of our GNN-

based framework for personalized visualization recommendation.

In this work, we derived a user-centered dataset where for each user

we know their datasets, visualizations, visual-configurations (set of

design choices for a visualization), and the subset of attributes used

in the visualizations. We started with 2.3 million visualizations from

the Plot.ly Community Feed. We group visualizations and datasets

by the author user. Each visualization from a user gets decomposed

into a visual-configuration (set of design choices) and a set of data

attributes used in the visualization (Figure 3). The set of attributes

in the user-generated visualization is typically a small subset of

the attributes in the user’s dataset. Then, we simply add a node

in the graph for a user, the visual-configuration, and a node for

every attribute in the dataset (which includes the attributes used

in the visualization generated by the user). Nodes are added only

if they do not already exist in the graph. We then add edges that

connect a user with the attributes used in the specific visualization

they generated, along with an edge connecting the user to the

visual-configuration pertaining to the visualization at hand.

Attributes from a dataset that never appeared in a visualization

are also included in the graph, since if meta-feature vectors are

available for such attributes, then our GNN-based approach can

leverage these attributes to learn implicit connections between

the attributes that were also never used. For instance, another

user that liked or created a visualization using attributes from a

different dataset, may be similar to another attribute in some other

dataset of interest from a different user through the meta-feature

vectors pertaining to these attributes. Hence, connections can be

implicitly created through the meta-feature vectors of attributes

across different datasets. In addition, even though the attributes are

not included in one or more visualizations for a specific user, they

are likely to be very useful for generating new visualizations that

the user may find useful and insightful. As an example, a dataset of

interest to some user may have many attributes, and some of these

can be similar to the attributes used in a visualization preferred

by that user, and therefore important to them for their underlying

task. However, the user may not know about this attribute and

its similarity with the attributes of interest (e.g., it could just be

overlooked or perhaps the dataset is so large and its infeasible for

the user to understand all the attributes in this dataset of interest).

The large corpus of user-preferred visualizations and datasets are

summarized in Table 1. In particular, Table 1 reports the number of

users, attributes, datasets, visualizations, and visual-configurations

extracted from all the visualizations of the users, among many other

useful statistics that aid in understanding the large corpus used

in this work. The user-level corpus (of datasets and visualizations)

consists of a total of 17,469 users; these users created visualizations

from 94,419 datasets which included a total of 2,303,033 attributes.

The user-centric visualization training corpus has a total of 32,318

relevant visualizations generated by these users with an average of

1.85 relevant visualizations created per user. Each user in the corpus

has an average of 5.41 datasets and each dataset has an average of

24.39 attributes. From the 32.3k visualizations, we extracted a total

of 686 unique visual-configurations.

For every user and dataset of interest to them, we know the

visualizations that they preferred (generated), and therefore can

use this ground-truth information to quantitatively evaluate our

approach for personalized visualization recommendation. To evalu-

ate the system quantitatively, we randomly select a single relevant

visualization generated by the user for a specific dataset of interest

to them, and randomly sample 19 negative visualizations that were

not of interest to the user.
1
This approach gives us a total of 20 vi-

sualizations per user (1 positive + 19 negative) to use for evaluation.

Using this held-out set of user visualizations, we evaluate the ability

of the proposed approach to recommend positive visualizations to

the user (which are visualizations the specific user actually created).

In particular, given a user i and a dataset of interest to that user, we
use the proposed approach to recommend the top-k visualizations

personalized for that specific user and dataset.

To quantitatively evaluate the personalized ranking of visualiza-

tions given by the proposed personalized visualization recommen-

dation models, we use rank-based evaluation metrics including Hit

Ratio at K (HR@K) and Normalized Discounted Cumulative Gain

(NDCG@K) [13]. Intuitively, HR@K quantifies whether the held-

out relevant (user-generated) visualization appears in the top-K
ranked visualizations or not. Similarly, NDCG@K takes into ac-

count the position of the relevant (user generated) visualization in

the top-K ranked list of visualizations, by assigning larger scores

1
Since the space of possible visualizations is tied to the specific user’s dataset (and

disjoint across different datasets), non-relevant visualizations for a specific dataset and

user are sampled from those that can be generated for the underlying dataset. One

direction for future work is to investigate different negative sampling techniques.
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Table 3: Ablation study results for different variants of our GNN-based framework.

HR@K NDCG@K

Model @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

VisGNN 0.684 0.724 0.756 0.786 0.800 0.415 0.530 0.570 0.590 0.598

VisGNN-lstm 0.672 0.727 0.750 0.763 0.778 0.530 0.633 0.653 0.661 0.667
VisGNN-mean 0.640 0.690 0.726 0.741 0.754 0.399 0.502 0.536 0.549 0.557

Table 4: Results of a VisGNN variant that leverage meta-
feature embeddings explicitly.

HR@K

Model @1 @2 @3 @4 @5

VisGNN 0.684 0.724 0.756 0.786 0.800

VisGNN-M 0.537 0.660 0.751 0.825 0.873

to visualizations ranked more highly in the list. For both HR@K

and NDCG@K, we report K = 1, . . . , 5 unless otherwise mentioned.

An effective personalized visualization recommender will assign a

larger score to the user-relevant visualizations and smaller scores

to the non-relevant visualizations for that specific user.

We used a variety of baseline methods for comparison:

• PopVis: PopVis decomposes a visualization into its attribute

and visual-configuration, then derives a score for the vi-

sualization by taking the product of the number of times

the visual-configuration was used in the corpus, along with

the frequencies of the attributes used in the visualization of

interest.

• kNNVis: Given the attributes and visual-configuration of a

visualization of interest, we score the visualization by taking

the mean score of the visual configurations that are most sim-

ilar to it, along with the mean score of the top attributes most

similar to each of the attributes used in the visualization.

• eALS: This baseline is a state-of-the-art MF method typically

used for item recommendation [13], which we adapted to

our visualization recommendation problem by minimizing

squared loss while treating all unobserved user iterations

between attributes and visual-configurations as negative ex-

amples, which are weighted non-uniformly by the frequency

of attributes and visual-configurations.

Personalized Visualization Recommendation Results. Over-
all, our proposed GNN model for personalized visualization rec-

ommendation significantly outperforms the baselines as seen in

Table 2. This result holds across both evaluation metrics (HR and

NDCG) and across all k . In Table 3, we compare a few variants

from our VisGNN framework. For these experiments, we vary the

relational aggregation function used in VisGNN while fixing all hy-

perparameters. This allows us to understand the impact and utility

of using other aggregation functions. In particular, we investigate

using other relational neighborhood aggregator functions including

mean and lstm. For HR@K, we observe that VisGNN generally

outperforms the other methods across all hit ratios as shown in Ta-

ble 3 (with the exception of HR@K where VisGNN-lstm performs

slightly better). In contrast, we observe that VisGNN-lstm out-

performs the other variants when considering the NDCG ranking

evaluation metric. These results demonstrate the utility of graph

neural networks for this complex recommendation task.

VisGNN with Meta-Features. In Table 4, we compare a variant from

the VisGNN framework. Notably, we investigate a variant of Vis-

GNN that leverage additional graph information in the form of the

meta-feature matrix M. More specifically, we use the meta-feature

learning approach proposed in [29] to derive the meta-feature ma-

trix M that consists of a fixed-length meta-feature vector m for

every attribute across all datasets. Intuitively, the meta-feature vec-

tor of an attribute (from an arbitrary dataset) captures the important

data characteristics of the attribute in a shared low-dimensional

space where attributes from any arbitrary dataset can be compared

and leveraged in learning. We map every attribute to a shared k-

dimensional meta-feature space that allows our GNN framework to

learn from user-level attribute preferences across all the different

datasets of the users. Most importantly, the shared meta-feature

space is independent of the specific datasets and the meta-features

represent general functions of an arbitrary attribute, independent

of the user or dataset that it arises. This approach enables our GNN-

based framework to learn from the user-level attribute preferences,

despite that those preferences are on entirely different datasets.

Now, given M, we derive the following new heterogeneous graph
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Figure 6: Varying embedding dimension d and HR@K.
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G as follows:

G =


■ A C ■
A⊤ ■ D M
C⊤ D⊤ ■ ■
■ M⊤ ■ ■

 (17)

Results are provided in Table 4. Overall, we observe that when

k is small, the original VisGNN without M performs best. How-

ever, as k becomes larger, then using this additional information

during training allows for better user-personalized embeddings to

be learned, and therefore improves the user-specific personalized

visualization recommendations given by our approach, as shown

in Table 4. However, VisGNN-M still significantly outperforms the

baseline methods in Table 2 across all HR@K .

Embedding size. To understand the effect of model performance

with respect to the embedding size used in VisGNN, we vary the

embedding size d of the VisGNN models from d ∈ {2, 4, 8, 16, 32}.

We provide results in Figure 6. We observe that performance of the

trained VisGNN models generally increases as a function of the

embedding size d . More specifically, performance of the VisGNN

models generally increases as the embedding size d becomes larger

as shown in Figure 6.

Layer size. We also investigate the impact of the layer sizes of

VisGNN. In this experiment, the network structure of VisGNN

follows a tower pattern where the layer size of each successive

layer is halved. In Table 5, we observe a significant improvement

in the ranking when using larger layer sizes.

Table 5: Varying the layer sizes used in VisGNN.We vary the
layer sizes used in the neural architecture tower structure by
a multiple of {2, 3, 4}.

HR@K

Layer Sizes @1 @2 @3 @4 @5

8-16-32-64-128-256 0.707 0.739 0.769 0.795 0.815

8-28-84-252-756-2268 0.740 0.759 0.772 0.788 0.807

8-32-128-512-2048-8192 0.794 0.804 0.817 0.837 0.851

Personalized Attribute Recommendation Results. In this sec-

tion, we investigate VisGNN for personalized attribute recommen-

dation. For these experiments, we randomly hold-out 5% of the

nonzero values that correspond to observed attribute preferences.

We repeat this 10 times and average the results. Each sample cor-

responds to a train and test split. The personalized ranking of at-

tributes is on the specific dataset where an attribute appears in. For

attribute recommendation, we compare to a baseline that selects

an attribute uniformly at random from the test dataset. We also

compare VisGNN to a kNN baseline for attribute recommendation

called AttrKNN that computes the similarity between each of the

attributes in the dataset and uses these scores to obtain a ranking

of the attributes for the given user. Results are provided in Table 6.

Overall, the VisGNN approach outperforms both baselines across

allK . These results indicate the effectiveness of VisGNN for the per-

sonalized attribute recommendation task. In future work, we plan to

investigate VisGNN for across-dataset attribute recommendation.

Table 6: Personalized Attribute Recommendation Results.

HR@K

@1 @2 @3 @4 @5

Random 0.089 0.168 0.262 0.349 0.429

AttrKNN 0.222 0.296 0.296 0.370 0.444

VisGNN 0.630 0.704 0.704 0.741 0.777

5 CONCLUSION
This work proposed VisGNN: a graph neural network framework

for the problem of personalized visualization recommendation. To

the best of our knowledge, this is the first work to develop and lever-

age GNNs for this problem. We developed a GNN-based framework

that first represents the large corpus of datasets and visualizations

from users as a large heterogeneous graph. Our GNN framework

decomposes a visualization into its data and visual components,

and then jointly models each of them as a large graph to obtain em-

beddings of the users, attributes (across all datasets in the corpus),

and visual-configurations. From these user-specific embeddings of

the attributes and visual-configurations, we can then predict the

probability of any visualization arising from a specific user. The

experiments demonstrated the effectiveness of our graph neural net-

work framework for personalized visualization recommendation.

We also performed an ablation study to investigate the effective-

ness of a variety of other GNN-based models from our framework.

Finally, VisGNN was also shown to be useful for the sub-task of

personalized attribute recommendation.
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