
Cicero: A Declarative Grammar for Responsive Visualization
Hyeok Kim

Northwestern University
Ryan A. Rossi
Adobe Research

Fan Du
Adobe Research

Eunyee Koh
Adobe Research

Evanston, IL, U.S.A. San Jose, CA, U.S.A. San Jose, CA, U.S.A. San Jose, CA, U.S.A.
hyeok@northwestern.edu rrossi@adobe.com fdu@adobe.com eunyee@adobe.com

Shunan Guo Jessica Hullman Jane Hofswell
Adobe Research Northwestern University Adobe Research

San Jose, CA, U.S.A. Evanston, IL, U.S.A. Seattle, WA, U.S.A.
sguo@adobe.com jhullman@northwestern.edu jhofs@adobe.com

Disaster Cost

French
Election

Natural DisasterCOVID Spending 2COVID Spending 1

Aid Budget
Wheat &

Wages

Oil Spills

1
2

Bond Yields

U.S. Cabinet 2

Justice Kennedy

U.S. Cabinet 1

Drug OverdoseDesktop version

Mobile
version

Figure
desktop and mobile versions, respectively. The mobile versions of the Oil Spills case are from (1) the original article and (2) the
version suggested by Hofswell et al. [13]. Full size images are included in the Supplemental Material (https://osf.io/eg4xq).

1: Thirteen responsive visualization use cases reproduced using Cicero. The blue- and gray-bordered views are the

ABSTRACT
Designing responsive visualizations can be cast as applying trans-
formations to a source view to render it suitable for a diferent
screen size. However, designing responsive visualizations is often
tedious as authors must manually apply and reason about candi-
date transformations. We present Cicero, a declarative grammar
for concisely specifying responsive visualization transformations
which paves the way for more intelligent responsive visualization
authoring tools. Cicero’s fexible specifer syntax allows authors
to select visualization elements to transform, independent of the
source view’s structure. Cicero encodes a concise set of actions
to encode a diverse set of transformations in both desktop-frst
and mobile-frst design processes. Authors can ultimately reuse
design-agnostic transformations across diferent visualizations. To
demonstrate the utility of Cicero, we develop a compiler to an
extended version of Vega-Lite, and provide principles for our com-
piler. We further discuss the incorporation of Cicero into responsive
visualization authoring tools, such as a design recommender.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3517455

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Visualization.

KEYWORDS
Visualization, responsive visualization, grammar
ACM Reference Format:
Hyeok Kim, Ryan A. Rossi, Fan Du, Eunyee Koh, Shunan Guo, Jessica
Hullman, and Jane Hofswell. 2022. Cicero: A Declarative Grammar for
Responsive Visualization. In CHI Conference on Human Factors in Computing
Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3491102.3517455

1 INTRODUCTION
Responsive visualizations adapt visualization content for diferent
screen types, making them essential for most Web-based contexts
due to an increasing proportion of mobile viewers. Responsive
visualization authoring environments, however, tend to require
considerable manual efort on the part of visualization designers.
Prior fndings on responsive visualization design practices [13, 16]
indicate that authors often start from a source view and then ap-
ply responsive transformations to produce a set of target views
optimized for diferent screen types. However, this approach can
be tedious as authors must manually explore, apply, and evaluate
diferent responsive strategies one by one. For example, authors
might create responsive views by crafting an artboard and/or spec-
ifcation per responsive view, which is particularly problematic
when one of the responsive views is revised. They may have dif-
culty in expressing changes that occur across a design specifcation

https://osf.io/eg4xq
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
mailto:permissions@acm.org
mailto:jhoffs@adobe.com
mailto:jhullman@northwestern.edu
mailto:sguo@adobe.com

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

mark: {
 type: “bar”,
 yOffset: 5,
 ... },
encoding: {
 y: {
 ...
 axis: {
 ...
 labelAlign: “left”,
 labelBaseline: “middle”,
 labelPadding: -5,
 labelOffset: -15, ...

5
6
7

10
11

14

19
20
21
22

mark: { type: “bar”,
 ... },
encoding: {
 y: {
 ...
 axis: { ... }, ...

5

6
7

14

Label-mark serialization Label-mark parallelization

(a1) Using Vega-Lite (b1) Using Vega-Lite

{ specifier: {
 role: “axis.label” }},
 action: “transpose”,
 option: {
 serial: true }}, ...

7
8
9
10
11

(a2) Using Cicero
{ specifier: {
 role: “axis.label” }},
 action: “transpose”,
 option: {
 serial: false }}, ...

7
8
9
10
11

(b2) Using Cicero

Figure 2: Design specifcations for label-mark serialization
using (a1) Vega-Lite and (a2) Cicero and parallelization using
(b1) Vega-Lite and (b2) Cicero.

(e.g., example cases in Figure 2 and Figure 3). Authoring painpoints
like these suggest a need for more intelligent authoring tools, such
as semi- or fully automated recommenders that support exploring
and reasoning about responsive design strategies [16, 17].

A key step toward such intelligent responsive visualization au-
thoring tools is a concise, declarative grammar that can express a
diverse set of transformation strategies. While declarative visualiza-
tion grammars like Vega [34] and Vega-Lite [33] are well suited to
developing more sophisticated visualization authoring tools, they
are not necessarily well suited to representing visualization transfor-
mations; Hofswell et al. [13] observe that diferent edit properties
for text and marks in Vega-Lite [33] make it complicated to create
the specifcations for multiple versions of a visualization despite its
high expressiveness. Indeed, many responsive visualization strate-
gies that researchers have identifed [16] can be written in Vega-Lite
with high complexity. For instance, serializing labels and marks
using Vega-Lite (i.e., placing them in a vertical order [16]) requires
layout adjustment keywords (Figure 2a1, line 7, 19–22), while par-
allelizing them (i.e., arraying them horizontally) does not require
layout modifcations in Vega-Lite (Figure 2b1, line 14). Whereas
Vega-Lite requires authors to create separate specifcations for each
responsive view that interleave complex layout changes throughout
the specifcations, a declarative grammar for responsive transfor-
mations can express the same strategies in a simpler way as shown
in Figure 2 (a2) and (b2). Such an approach can help visualization
authors easily and quickly compose responsive design specifca-
tions and can help developers to more efectively develop authoring
tools for responsive visualization.

To this end, we present Cicero: a fexible, expressive, and reusable
declarative grammar for specifying responsive visualization trans-
formations. The fexible specifer syntax of Cicero enables querying
visualization elements using their role (e.g., mark, axis labels, title),

underlying data, and attributes of visualization elements, indepen-
dent of the structure of a source view specifcation. Cicero pro-
vides a compact set of action predicates (add, duplicate, remove,
replace, swap, modify, reposition, and transpose) that can en-
code a diverse range of transformation techniques (Figure 5c). More-
over, Cicero supports extracting and reusing generalizable trans-
formations strategies across multiple responsive specifcations. For
example, the expressions (a2) and (b2) in Figure 2 can be reused on
other visualizations with bar-like marks and axis labels.

To demonstrate the utility of Cicero, we develop a Cicero com-
piler for an extended version of Vega-Lite that we adapted to sup-
port annotations and other narrative devices and reproduce 13
real-world examples in Cicero (Section 6). We provide a set of prin-
ciples for developing our Cicero compiler in terms of desirable
properties of the association of visualization elements, preferable
default behavior, and how to manage conficts between transforma-
tions (Section 5). As Cicero is agnostic to the underlying structure of
a source visualization, it can be leveraged in diferent visualization
authoring tools. To demonstrate the feasibility of Cicero in such
authoring tools, we describe how Cicero applies to a prototype rec-
ommender we developed for responsive transformations as a proof
of concept and envision an approach to mixed-initiative authoring
tools (Section 7). Future work can implement a Cicero compiler
for other declarative grammars like the original Vega-Lite [33] or
ggplot2 [37] and other recommender approaches (e.g., [40]).

2 RELATED WORK
This work is motivated by prior research on responsive visualization
and declarative visualization grammars.

2.1 Responsive Visualization
Prior research has examined how visualization authors customize
a visualization for smaller screens in terms of visual elements and
structure [2, 8, 43], and interaction methods [15]. For instance, VI-
Sizer [43] provides a point-of-interest-based framework to resize
a visualization while preserving regions with important insights.
Recent works [13, 16] provide a more comprehensive snapshot of
current responsive visualization design practices. Motivated by a
qualitative analysis of 231 responsive visualizations and a forma-
tive interview study, Hofswell et al. [13] implement an authoring
tool that supports editing across diferent responsive views via
simultaneous previews and global edits, as well as view-specifc
customization. Using a similar approach, Kim et al. [16] present a
set of responsive visualization design patterns and identify a trade-
of between achieving appropriate graphical density for each view
and preserving intended takeaways across transformations. To ad-
dress the trade-of between density and takeaways, Kim et al. [17]
provide a set of task-oriented insight preservation measures for
a responsive visualization recommender limited to a small set of
design transformations (e.g., aggregation, axes-transposing). A re-
cent machine learning-based approach [40, 42] provides automated
methods to confgure visualization layouts based on the chart size
using a set of simple heuristics, yet it does not ofer a grammar that
can express a large set of responsive visualization techniques.

Responsive design has been well-studied for the Web more gen-
erally [7, 27], but such techniques are not directly applicable to

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

responsive visualization design because they are intended for Web
layouts and based on limited knowledge of visualization design.
For example, CSS media queries [24] express breakpoints for each
responsive version of the contents. CSS specifcations under a me-
dia query of @media screen and max-width 600px are shown
only on a screen-side application (e.g., Web browser) with width ≤
600px. Similarly, CSS specifcations under a media query of @media
speech are used by speech synthesizers like a screen reader. How-
ever, using CSS alone cannot enable specifcation of many respon-
sive transformations specifc to visualization, such as transposing
axis (requiring changes to scale functions), un-fxing tooltip posi-
tions, changing mark types (requiring dynamic positioning), and
transforming data (requiring custom JavaScript functions).

In practice, designers create responsive visualizations with mul-
tiple tools in an iterative manner. D3.js [5] is a highly expressive
JavaScript (JS) library for SVG- or Canvas-based visualizations. Ac-
cording to prior work on visualization authoring practices [4, 31],
designers often use D3.js (or equivalent tools) with ai2html [35],
which renders Adobe Illustrator vector images (.ai fles) to HTML.
Designers frst draw a visualization using D3.js [5], then load and
edit the SVG graphic of the visualization as responsive ‘artboards’
in Adobe Illustrator [31]. Authors can also defne responsive condi-
tion parameters for interactive visualizations using D3.js (e.g., scale
functions for x and y positions to be swapped for mobile screen).
R3S.js [19] ofers programming interfaces for such parameteriza-
tion by extending D3.js [5]. However, it is not fully declarative, so
authors need to imperatively defne each transformation, which re-
quires programming expertise. For example, to reposition a tooltip,
which is a common responsive transformation strategy [16], R3S.js
requires the use of custom CSS rules and/or JS functions.

For simple charts and quick edits, authors can utilize responsive
properties of existing tools like Vega, Google Chart, and Microsoft
Power BI. While Vega [34] and Vega-Lite [33] support some ‘sensi-
ble’ defaults, such as ftting the number of axis labels to the chart
size, users need to have fully defned specifcations for each of the
responsive views. Google Chart [11] ofers several default settings
for mobile views such as truncating labels with an ellipsis (...). Power
BI [26] provides defaults for responsiveness (e.g., making a visu-
alization scrollable, rearranging legends, removing axis, etc.) [9].
While these tools can simplify the design process, their limited
expressiveness may prevent authors from specifying intended re-
sponsive transformations, limiting their ability to convey insights.

Lastly, commercial tools like ZingChart and DataWrapper al-
low for responsive settings. ZingChart [44] provides ‘media rules’
through which a designer can declare a screen size condition for a
visualization element (e.g., label: ‘October 4’ for screen size > 500
and ‘Oct. 4’ for screen size < 500). However, those media rules are
dependent on the chart type—for example, transposing a scatterplot
and a bar chart requires changes to data structure and the chart
type, respectively—which limits the expressiveness and fexibility
for responsive transformations. DataWrapper [1], an authoring
tool for communicative visualizations, allows authors to choose
whether and how to show a visualization element for mobile screens
(e.g., showing a table as a stack of cards [30], or numbering annota-
tions [29]). However, it is not available in the form of a declarative
grammar which limits how easily it can be extended or applied to
future authoring tools, such as a mixed-initiative authoring tool.

2.2 Declarative Visualization Grammars
Declarative grammars help visualization authors to avoid complex
programming through a compiler that implements user-declared
specifcations (e.g., [12, 18, 28, 33, 34, 37]). For example, a Vega-
Lite [33] specifcation uses JavaScript object notation (JSON) to
encode chart size, data source and transformation, visual encodings,
multiple views, and user interactions using predefned primitives.
Some declarative grammars target specifc use-cases by leveraging
more general-purpose grammars. For example, Gemini’s animated
transition grammar formalizes chart animation entities [18] based
on starting and ending visualizations specifed using Vega [34].
Moreover, declarative grammars facilitate computational opera-
tions on visualization specifcation, which enables the develop-
ment of useful visualization applications on top of the underlying
grammar. For example, many end-user tools like visualization rec-
ommender(s) [28, 38, 39] and editor(s) [32] use Vega-Lite [33] to
represent the visualization design specifcation. In responsive visu-
alization settings, Hofswell et al. [13] provide a design editor using
Vega-Lite [33], and Kim et al. [17] propose automated recommen-
dation of responsive visualization designs using Draco [28].

However, existing declarative visualization grammars are often
limited when it comes to supporting expressive responsive visu-
alization designs. For example, common responsive visualization
strategies like fxing a tooltip position, aggregation, internalizing
labels, and externalizing annotations (c.f. [16]) are not supported
or are complicated to specify in Vega-Lite [33]. In addition, many
commonly used visualization grammars (e.g., ggplot2 [37], Vega-
Lite [33]) require authors to defne multiple full visualization speci-
fcations for each responsive view, which makes it difcult to prop-
agate changes from one design to another. ZingChart [44] provides
‘media rules’ to specify conditions for responsive properties, yet
it is often difcult (or impossible) to express a large set of design
transformations like transposing layout or changing mark types.

Our approach proposes a novel declarative grammar that can
express various responsive transformations, accompanied by a com-
piler built on an extended version of Vega-Lite. To demonstrate the
utility of Cicero for visualization tooling, we develop a proof-of-
concept prototype recommender for responsive design transforma-
tions that encodes a larger set of design strategies than the scope
of Kim et al. [17], using Cicero as the representation method.

3 THREE DESIGN GUIDELINES FOR A
RESPONSIVE VISUALIZATION GRAMMAR

We derive three central design guidelines for a responsive visual-
ization grammar based on prior work [2, 4, 13, 16, 19, 31, 44].

(D1) Be expressive. A responsive visualization grammar should be
able to express a diverse set of responsive design strategies spanning
diferent visualization elements. One approach is to characterize
a responsive transformation strategy as a tuple of the visualiza-
tion element(s) to change and a transformation action [13, 16].
Selecting visualization element(s) should support varying levels
of customization for responsive transformations because trans-
formations can include both systematic changes (e.g., externaliz-
ing all text annotations or shortening axis labels) and individual
changes (e.g., externalizing a subset of annotations or highlighting

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

Desktop layout Mobile layout
Column A Column B

Column A
Column B

Figure 3: Responsive transformation from axis labels to a
legend accompanied by a layout change for smaller display.

a particular mark) [16]. A grammar needs to express responsive
transformations as a concise set of ‘actions’ describing how visu-
alization elements are changed [13, 16]. To be expressive, our
grammar provides (1) a query syntax for selecting visualiza-
tion elements both systematically and individually and (2)
consistent, high-level action predicates that can encode a di-
verse set of responsive design strategies.

(D2) Be fexible. A responsive visualization grammar should ofer
fexibility in how an author can specify the behavior of an entity
under a responsive transformation, independent of how the entity
is expressed in the specifcation (or structure) of the source visu-
alization. For example, suppose a visualization that has a nominal
color encoding that maps dog, cat, and fox to red, blue, and green.
Then, to select red marks, some authors can specify simply “red
marks” (using attribute) while others can make the same selection
by specifying “marks for dog” (using data). Furthermore, responsive
transformations can occur across diferent visualization elements.
For instance, as illustrated in Figure 3, one can change the layout
by moving a column element to the row (partial view transpose)
to accommodate a portrait aspect ratio. Following the previous
transformation, the column labels can be replaced with a legend
if there is a redundant mark property encoding. To be fexible,
our responsive visualization grammar supports multiple ex-
pressions for specifying visualization elements that can be
independent of the structure of a visualization.

(D3) Be reusable. A responsive visualization grammar should en-
able authors to easily (i.e., without making big changes) reapply
generalizable responsive transformations across diferent visual-
izations. While reuse is straightforward for visualizations sharing
the same properties, many responsive designs utilize generic trans-
formations that are independent of the specifc chart design, data,
or base visualization (e.g., transposing the layout, numbering an-
notations, using a fxed tooltip position). Moreover, authors might
want to repeat techniques only for certain features of a visualiza-
tion (e.g., removing a data feld regardless of chart type). To be
reusable, our responsive visualization grammar represents
each responsive transformation in a form that helps users
to easily extract and apply transformations to other views.

With these guidelines in mind, there are several possible ap-
proaches for specifying responsive transformations, such as: (1) dec-
orating a complete visualization specifcation and (2) separately
defning responsive transformations. The frst approach uses con-
ditional keywords (e.g., media_rule in ZingChart [44]) to express
transformations. For example, in Figure 4a, the media_rule key-
words for the x (line 5–7) and y (line 10–12) encodings describe the

(a) Decorating a specification
 with conditional statements

(b) Declaring transformation
 separately

{ ...
 encoding: {
 x: {
 field: “category”,
 media_rule: {
 channel: y
 }},
 y: {
 field: “amount”,
 media_rule: {
 channel: x
 },
 axis: {
 labelFormat: “$,d”
 media_rule: {
 labelFormat: “,d”
 }},
 size: { ...
 legend: {
 labelFormat: “$,d”
 media_rule: {
 labelFormat: “,d”
 }}} ... }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
2
3
4

{ specifier: {
 role: “encoding”,
 channel: [“x”, “y”] },
 action: “swap” }

{ specifier: {
 role: “text”,
 format: “$,d” },
 action: “modify”,
 option: {
 format: “,d” }}

Unclear where
to declare this

Across different
elements

Enhance
reusability

1
2
3
4
5
6

Figure 4: Two possible approaches to specifying responsive
transformations. (a) Decorating a specifcation with condi-
tional statements. (b) Separately defning responsive trans-
formations.

changes for each encoding when viewed in a media format (e.g., a
‘swap’ action). The media_rule keywords for the y axis (line 15–
17) and the size legend (line 21–22) describe the same change to
the label format for both types of elements. For the same set of
transformations, the second approach in Figure 4b directly declares
that the two position channels should be swapped and concisely
describes changes to the label format for all text elements. While
we choose to use the JSON format, other formats could be used to
extend our approach; for example, Altair [36] is a Python wrapper
for Vega-Lite [33] that leverages object-method chains rather than
Vega-Lite’s JSON format.

While the frst approach simplifes the learning process by ex-
tending an existing grammar, it can sometimes be tedious and
unclear how to specify responsive transformations that apply to
multiple elements. In particular, this approach often requires a sin-
gle responsive change (e.g., transposing an axis) to be interleaved
across multiple parts of the specifcation (Figure 4a, Line 5–7 and
10–12). In contrast, the second approach can enhance the reusability
(D3: reusable) of a transformation specifcation by separating the
desired responsive changes from the original visualization design.
Furthermore, this approach can support more generalizable trans-
formations that are independent of the original visualization struc-
ture (D2: fexible; e.g., changing all text formats directly). Therefore,
in this work we opt for the second approach.

4 RESPONSIVE VISUALIZATION GRAMMAR
We introduce Cicero, a declarative grammar designed to concisely
express responsive transformations. Paired with a declarative speci-
fcation for a source visualization, Cicero provides a concise syntax
for describing responsive changes independent of the structure of
the original visualization specifcation. A single Cicero specifcation
defnes how to transform an initial visualization design to a new
design, thereby encoding the responsive transformations required

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

to convert a visualization into a responsive version for a partic-
ular format. A Cicero specifcation consists of a metadata object
(metadata, line 2–4 of Figure 5a) and a list of transformation rules
(transformations, line 5–78 of Figure 5a). The metadata object
contains meta-information about the context for the target view
(i.e., the intended environment, including information like the me-
dia type and screen size). The responsive strategies are encoded as
separate rules in the list of transformations. We use a ‘list’ struc-
ture to enhance the reusability of the grammar by ensuring that
each rule modularly describes a single responsive change to the
source view (D3: reusable). The formal specifcation of the Cicero
grammar is shown in Figure 6 and the Supplemental Material.

The core components of a rule object include the specifier
(which elements to change), an action (how to change the ele-
ments), and the option (what properties to change). The specifier
queries the source visualization to identify the set of existing vi-
sualization elements to be transformed, and supports fexibly ref-
erencing visualization elements with varying levels of scope (D2:
fexible). Then, the action and option provide high-level direc-
tion and detailed information about the change to be made to the
selected elements, respectively, together encoding a wide range of
transformations to elements selected by the specifier (D1: expres-
sive). For example, the rule object in line 6–9 of Figure 5a states that
the compiler should ‘modify’ (action) the ‘mark’ (specifier)’s
‘color’ to be ‘red’ (option).

In Section 6, we provide a complete walk-through of the “Bond
Yields” example; twelve additional examples are available in the
Supplemental Material. We chose properties and values for the
specifier, action, and option in a principled fashion based on
these example use cases (Section 6) and prior work [13, 16]. As a
Cicero specifcation is independent of the structure of the source
visualization, Cicero’s properties and values can be extended in the
future as needed.

4.1 Specifer: Selecting elements to transform
A specifier indicates which elements to transform on the target
visualization. A specifier should only express existing element(s)
from the target view, which the compiler then uses to identify the
corresponding element(s) and extract relevant properties. Authors
tend to apply responsive transformations to groups of element(s)
sharing the same role, such as axis labels, mark tooltips, or legend
marks, as characterized in prior work [13, 16]. In addition, authors
may want to include transformations specifc to some data features
(e.g., mark labels for specifc data points, the axis corresponding
to a particular data feld) and/or the visual attributes of the visual-
ization element(s) (e.g., red-colored bars). To express visualization
elements using diferent characteristics, one can declare a specifer
by structure, data, and attribute queries.
Structure query: Many declarative visualization grammars like
ggplot2 [37], Vega [34], and ZingChart [44] defne roles for visu-
alization elements (e.g., marks, axes). Structure queries identify
elements based on this role, and provide additional fexibility for se-
lecting and grouping elements in diferent ways, regardless of how
the original visualization specifcation defne them (D2: fexible).
Keywords for structure queries include role, mark, index, and id.

The role keyword specifes the role of a visualization element
(see Figure 5b). The role can be cascaded to specify subordinate
elements like "mark.label" for labels associated with the visu-
alization marks or "legend.mark" for legend marks. For brevity,
cascaded role keywords can be shortened when its parent role is un-
ambiguous (e.g., "layer.mark" as "mark"; "view.row" as "row",
possible short forms are indicated as gray-colored and parenthe-
sized in Figure 5b). The mark keyword specifes the type of mark,
which is useful when there are multiple mark types in a visualiza-
tion. One can include the index keyword to indicate the specifc
element to select from a group of related elements (e.g., {role:
"title", index: 1} selects the second title element). To indi-
cate the frst and last element, one can use "first" or "last" for
the index value. Using "even" and "odd" can express every other
(even and odd) element, respectively. The id keyword selects infor-
mational marks (emphasis) by their defned names or identifers
(e.g., line 43 in Figure 5).
Data query: A data query can reference a subset of data (data),
a data feld (field), the type of a variable (datatype), and val-
ues for elements (values) to support varying level of customiza-
tion in selecting visualization elements (D1: expressive). For exam-
ple, the specifer {role: "mark", data: {price: 30}} selects
all marks that encode a price value of 30. Likewise, the spec-
ifer {role: "axis", field: "price"} expresses axes for the
price feld; {role: "legend", datatype: "nominal"} selects
legends for nominal data variables. The values keyword expresses
a subset of values for a reference element that is tied to a certain
data feld like axis and legend . For instance, the specifer {role:
"axis.label", values: [30, 50]} indicates the labels of an
axis that encode value of 30 or 50. Similar to the index keyword
for a structural query, one can use "even" and "odd" to specify
every other (even and odd) value element. In order to support more
complex data queries, we also provide a set of logical (NOT, AND,
OR), arithmetic (=, ,, ≤, ≥, ≤, ≥), and string operations (regex pat-
tern, startsWith, includes, endsWith) that can be composed to
further select and flter elements based on properties of the data
(D2: fexible).
Attribute query: An attribute query references visualization el-
ements based on their properties or attributes. The primary at-
tribute query keywords for identifying properties of visualization el-
ements are: channel, operation, and interaction. The channel
keyword indicates whether the element has a certain encoding
channel. For instance, the specifers {role: "layer", channel:
"color"} and {role: "legend", channel: "color"} indicate
layers and legends with a color encoding channel, respectively.
The operation keyword captures the type of data transformation
operations applied to the elements (e.g., flter, aggregate), and the
interaction keyword expresses the type of interaction features
(e.g., zoom, interactive flter). Cicero also supports the use of style
and position attribute keywords such as color, font size, orient, rel-
ative positions etc. (see $OtherAttributes in Figure 6). For marks,
those style attributes can be used to indicate mark properties (e.g.,
static color value or color encoding channel). For example, {role:
"mark", color: "red"} indicates red-colored marks.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

(a) Cicero specification overview

(c) Example transformations

(c) Example transformations (continued)

(b) Cicero role expressions

{ name: “exampleSpec”,
 metadata: {
 condition: “small”,
 aspectRatio: “portrait” },
 transformations: [
 { specifier: { role: “mark” },
 action: “modify”,
 option: {
 color: { value: “red” }}},
 ... // more rules
]}

data
(data.)transform
view
(view.)row
(view.)column
(view.)facet
(view.)axis
(view.)hAxis
(view.)vAxis
[axis].grid
[axis].domain
[axis].tick
[axis].label
[axis].title

(view.)layer
(view.)layer.transform
(view.layer.)mark
(view.layer.)mark.label
(view.layer.mark.)tooltip
(view.layer.)legend
(view.layer.)legend.title
(view.layer.)legend.label
(view.layer.)legend.mark

(view.)title
(view.)annotation
(view.)emphasis

data sets
transformations on raw data (e.g., filtering)
view/layout
the row elements of a view
the column elements of a view
the facets of a multiple-view chart
the axes of a view
the horizontal axes of a view
the vertical axes of a view
the grid lines of axes
the domain lines of axes
the tick lines of axes
the labels of axes
the titles of axes

[axis] = (view.)axis/hAxis/vAxis
the layers of a view
transformations on data for layers
the marks of layers
the text labels attached to marks
the tooltips attached to marks
the legends of layers
the titles of legends
the labels of legends
the marks of legends

the title of a view
the non-data text annotations
the non-data informational marks

1
2
3
4
5
6
7
8
9

78

{ comment: “modify axis labels’ color to blue
 and axis domains’ color to red”,
 specifier: { role: “axis” },
 action: “modify”,
 option: {
 label: { color: { value: “blue” },
 domain: { color: { value: “red” }}}}

{ comment: “modify mark labels’ color to blue”,
 specifier: { role: “mark” },
 action: “modify”,
 option: {
 role: “label”,
 color: { value: “blue” }}}

1

2
3
4
5
6
7
8
9
10
11
12
13

a rule describing “modify
the color of the marks to red”

10 20 10 20

Min
Max

Min
Max

40 70 40 50 60 70

10 20 30
Value

1

2
3

4 5

A
B

Type

Max

Min

Type: A
Value: 22

ab
d

f
g

ce

Value over Time
Some

change

A
B
C

1
2

3
4
5

a
b

d

f
g

c

e

A
B

C

(10, 5) (50, 15)

{ comment: “externalize annotations”,
 specifier: {
 role: “annotation” },
 action: “reposition”,
 option: { external: true }}

{ comment: “transpose axes”,
 specifier: { role: “view” },
 action: “transpose” }}

{ comment: “transpose axes (equivalent)”,
 specifier: { role: “layer” },
 action: “swap”,
 option: {
 channel: [“x”, “y”]}}

{ comment: “serialize label-marks”,
 specifier: { role: “mark.label” },
 action: “transpose”,
 option: { serial: true }}

{ comment: “add values of 50 and 60 to axis”,
 specifier: { role: “axis” },
 action: “add”,
 option: { values: [50, 60] }}

{ comment: “duplicate an arrow mark (non-data)”,
 specifier: {
 role: “emphasis”,
 id: “arrow” },
 action: “duplicate”,
 option: { x: 50, y: 15 }}

{ comment: “remove marks with a color channel”,
 specifier: {
 role: “mark”,
 channel: “color” },
 action: “remove” }

{ comment: “remove the color channel of marks”,
 specifier: {
 role: “mark” },
 action: “remove”,
 option: {
 channel: “color” }}

{ comment: “convert color channel to size channel”,
 specifier: {
 role: “mark” },
 action: “replace”,
 option: {
 channel: { from: “color” , to: “size”}}}

{ comment: “replace axis label with color legend”,
 specifier: {
 role: “axis.label”, field: “plan” },
 action: “replace”,
 option: {
 to: {
 role: “legend”,
 channel: “color” }}}

{ comment: “exchange color and size channels”,
 specifier: { role: “mark” },
 action: “swap”,
 option: {
 channel: [“color”, “size”]}}

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
76
77
78
79
80
81

Anno.

Anno.

Item 1
Item 2

Item 1

Item 2

Column A Column B Column A Column B

Figure 5: Examples and roles in the Cicero grammar. (a) An overview of a Cicero specifcation with a rule describing “modify
the color of the marks to red”. (b) role expressions used in Cicero. (c) Example transformations referred to in Section 4.

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

CiceroSpec := Name?, Metadata?, Transformations

Name := <String>

Metadata := Condition?, MediaType?, AspectRatio?, …?
Condition := xsmall | small | medium | large | xlarge | …
MediaType := screen | paper | …
AspectRatio := portrait | landscape | <Number> | …

Transformations := <Rule>[]
Rule := Specifier, Action, Option?

Specifier := Role, Mark?, Index?, Id?,
 Data?, Field?, Values?, Datatype?,
 Channel?, Operation?, Interaction?,
 $OtherAttributes?*

Action := modify | reposition | transpose | add
 | duplicate | remove | replace | swap

Option := Specifier° | To?, From?
To := Specifier°
From := Specifier°

Notation
“a := b, c”: a is defined as a tuple of b and c, “a?”: a is an optional argument, “…”: extensible arguments, “<Abc>”: data type,
“a ~ b, c”: possible names for a are b and c, “a|b|c”: either one of a, b, or c, “<A, B>[]”: a list of a tuple oft A and B,
“{}”: key-value map (e.g., JavaScript Object, Python Dict), “<Number>”: either a number or a string of a number with its unit (e.g., 350, “350px”).

Note
*$OtherAttributes include encoding channels, role values, and other appearance-related properties (e.g., font styles, stroke styles, etc.).
°An option and its to and from properties share the same structure as a specifier but with different semantics (see Section 4.2).
‡Possible role names are listed in Figure 5b.

Role‡ := view | layout | layer | mark | …
Mark := point | circle | rect | bar | line | …
Index := <Number> | first | last | even | odd
Id := <String>

Data := Datum | <Datum>[]
Datum := { <Field>: (<Any> | <Any>[] | <Op>[]) }
Op:= { <Operator>: <Any> }
Operator := not | and | or | == | > | >= | startsWith | …
Field := <String> Values := <Any>[]
Datatype := nominal | ordinal | quantitative | temporal | …

Channel := x | y | color | size | arc | …
Operation := OperationType | <OperationType>[]
OperationType := filter | aggregate | bin | …
Interaction := InteractionType | <InteractionType>[]
InteractionType := zoom | context | …

$OtherAttributes ~ position, x, y, color, label, title, bin,
 aggregate, scale, fontSize, strokeWidth, …
$OtherAttributes := <Any> | By | Prod
By := <Number> Addition to an existing value
Prod := <Number> Product with an existing value

Structure query
Data tquery

Attribute query

Figure 6: The formal specifcation of Cicero. The Supplemental Material provides more detailed description.

4.2 Action & Option: Applying transformations
The action indicates how to change the elements queried by a
specifer. We designed Cicero to provide a concise set of action
predicates that can encode a large range of transformations (D1:
expressive). The actions currently supported by Cicero are: modify,
reposition, transpose, add, duplicate, remove, replace, and
swap, chosen based on prior work [13, 16]. Our aim was to support
a minimal set of action predicates from the prior work [13, 16].
For example, reposition actions in Kim et al. [16] can be efciently
expressed with using a single ‘reposition’ action and various option
properties (e.g., externalize → reposition + external: true
and fix → reposition + fix: true). The ‘modify’ action can also
express these changes to positions, yet having a single ‘reposition’
keyword is likely simpler for authors to remember. This smaller
set of action predicates does not sacrifce much expressiveness, as
shown in our diverse set of examples in Figure 5, Section 6, and the
Supplemental Material.

The option object in a rule further details the change indicated
by the action. While the core structure of an option object is
the same as a specifer, the structure and keywords vary based
on the type of action. Keywords used in an option object refer
to the properties or subordinate elements of the elements that
were identifed by the specifier (e.g., axis labels are subordinate
elements of an axis), so a compiler should interpret an option
object with regard to the specifier.

For example, one can use the role keyword to specify subordi-
nate elements in an option object. An option {role: "label"}

means legend labels if the specifer is {role: "legend"} or mark
labels if the specifer is {role: "mark"}. When an option does not
include the role keyword, then the properties in the option indi-
cate those of the element identifed by the specifier. For example,
in line 8–9 of Figure 5a, "color" refers to the color of the "mark"
(the specifier in line 6), while the color keyword in line 13 of
Figure 5c expresses the color property of the marks’ (specifier)
labels (option). Finally, when role values are used as a keyword in
the option, they indicate the subordinate elements of the element
specifed by the specifier. For instance, in Figure 5c, line 5–6
mean the color of the axes’ (specifier) labels and domain lines
(option), respectively. The entire transformation rule (line 1–6)
states that the compiler should specify all the axes in the chart, and
modify the labels’ color to be blue and the domains’ to be red.
A modify action changes the properties of an element to spe-
cifc values, with an associated option object for expressing at-
tributes of the elements selected by the specifier. For instance,
one can modify the color of mark labels using the rule in line
8–13 of Figure 5. To make relative changes, including adding
or multiplying an attribute value by some value, one can use
by and prod operators, respectively. For instance, a user can ex-
press modifying the size of the specifed marks by subtracting 30
using the by operator: {specifier: {role: "mark"}, action:
"modify", option: {size: {by: -30}}}.
A reposition action is a special type of the modify action de-
signed to more intuitively support common transformations re-
lated to position properties like absolute positions (x, y), relative

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

positions (dx, dy), externalization (external, internal), etc. For
example, externalizing text annotations can be expressed as line
14–18 in Figure 5c. If a user wants to change the style and position
properties together, then a modify action is recommended.
A transpose action expresses the relative position of a pair of
elements, the relationship of which is defned a priori, like two
positional axes (x and y), labels associated with an axis or marks.
A transpose action helps simplify expressions for relational prop-
erties. For example, the rule in line 20–22 (Figure 5) transposes the
entire channel. The equivalent is to swap the x and y position chan-
nels in layers, as in line 24–28. To serialize labels to their marks,
one can use the rule in line 30–33 with a serial keyword in the
option. This behavior is the same as adjusting the label positions
(relative x and y values) and mark ofsets.
An add action adds new elements in a visualization. Since the
specifier only expresses existing elements (Section 4.1), the newly
added elements are provided in an option object. For example, to
express “add values of 50 and 60 to axis”, one can use the rule
in line 35–38 in Figure 5c. When the existing axis selected by the
specifier (line 36) has ticks and labels for each axis value, then
the rule should result in adding ticks and labels for those values
specifed in the option (line 38).
A duplicate action copies the element identifed by the specifier.
If provided, an option indicates the properties for the duplicated
element to change after duplication (e.g., repositioning the dupli-
cated element in line 40–45 of Figure 5c). In this case, the option
acts as a shortcut for a second modify transformation to update
the newly added element.
A remove action removes elements identifed by the specifier
when no option is provided; when included, the option specifes
the properties or subordinate elements that should be removed
from the elements identifed by the specifier. For instance, line
47–51 of Figure 5c removes all marks that include a color channel
(no option is provided); to instead remove the color channel of
these marks requires an option to be expressed (line 53–58).
A replace action expresses changes to the function of an entity
while retaining its attributes. Sometimes, a visualization author
may wish to change the role of an element such as changing from
axis labels to legends (Figure 3) or changing an encoding channel of
the marks to use increased screen space efciently. There are two
types of replace actions: replacing a property with another within
an element and replacing the role of an element with another. For
the frst case, users can use the from and to keyword to indicate
the original property and the replacing property. For instance, con-
verting a channel from color to size can be expressed as the rule
in line 60–65 (Figure 5c). Second, authors often change the role
of elements across the visualization structure, which requires an
option to not be subordinate to the specifer. In that case, users
can use a to keyword to indicate that this rule is changing the
structural property. For instance, one can replace an axis for the
feld plan with a legend for the color channel (which is meaningful
only when the color channel encodes the same feld) by having a
rule shown in line 67–74.

{ specifier: { role: “view” },
 action: “replace”,
 option: {
 from: {
 role: “column”,
 index: 0 },
 to: {
 role: “row”,
 index: 1 }}},

1
2
3
4
5
6
7
8
9

Figure 7: An example Cicero rule describing partial trans-
pose. The bars are grouped by columns in the left view (be-
fore) and by rows in the right view (after). The entire set of
transformations for this case (Aid Budget) can be found in
the Supplemental Material.

A swap action exchanges two entities (roles and encoding channels)
while retaining their properties, which shortens two replace actions
and helps avoid potential conficts. While a swap action has the same
option structure with a replace action, it can also use an array
to indicate properties to be swapped. For instance, to exchange
the color and size channels, one can have a swap action and an
array-based option as shown in line 77–81 (Figure 5c).

4.3 Reusability of Cicero Expressions
Responsive transformation strategies difer in how well they gener-
alize across visualizations. Sets of public-facing Web visualizations
often appear together in a data-driven article and may share data
sets, chart types, and style schemes, thereby facilitating transfor-
mation reuse. For example, the data fltering rule in line 5–10 of
Figure 13 can be reused for other charts sharing the same data
set because it references the data felds (year, forecasted_year)
directly. However, this rule cannot necessarily be reused on charts
with diferent data sets. On the other hand, authors can reuse the
partial axes transpose rule in Figure 7 for charts with a similar
format regardless of the underlying data set as the transformation
is declared independently. The fexible specifer syntax of Cicero
is designed to allow authors to express more reusable transfor-
mations. For instance, the transformation for adding axis values
in line 35–38 of Figure 5c can be reused on neighboring charts
to provide better consistency. Alternatively, one can express the
same rule as {specifier: {role: "vAxis"}, action: "add",
option: {index: "odd"}} to make the rule more generalizable by
not making direct reference to the underlying data scheme. Expres-
sion reusability is a core attribute of Cicero that naturally supports
sophisticated visualization authoring tools, such as recommender
systems, which we discuss further in Section 7.

5 PRINCIPLES FOR OUR CICERO COMPILER
To demonstrate the feasibility of Cicero and our proposed approach,
we developed a compiler for our extended implementation of Vega-
Lite. In the process, we identifed ten principles we considered when
implementing our Cicero compiler. As outlined in Figure 8,our pro-
totype Cicero compiler takes as input a Cicero specifcation and a
visualization design specifcation written in our extended Vega-Lite.
Then, the Cicero compiler returns a transformed design specifca-
tion in our extended Vega-Lite, which is eventually rendered by the
compiler of our extended Vega-Lite. For each transformation rule,

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Original
spec

Rendered
view

Cicero
spec

New
spec

Extended VL Extended VL

Cicero
compiler

Grammar
-specific
compiler

Figure 8: The pipeline for our Cicero compiler, developed for
our extended version of Vega-Lite.

our compiler frst selects an element(s) indicated by the specifier.
If the element(s) exists, then the compiler applies the changes spec-
ifed by the action and option. While developing the prototype
compiler and deriving the principles below, we examined exam-
ples from prior work [13, 16] and considered how our compiler
should deal with downstream efects to associated elements, the
default behavior of a rendering grammar, and conficting transfor-
mation rules. Future work can leverage our principles as useful
semantics of the Cicero grammar when implementing custom Ci-
cero compilers for other declarative visualization grammars. We
describe our custom Cicero compiler API in the Supplemental Ma-
terial (https://osf.io/eg4xq).
Our extended version of Vega-Lite provides a set of
workarounds for public-facing visualization technique, such as
text-wrapping and supplemental text (captions), that are currently
not supported in Vega-Lite [33], but were needed for our examples
(e.g., external annotations). We use this extension to demonstrate
the capabilities of Cicero for real-world use cases. The key difer-
ences from the current Vega-Lite are that our extension (1) uses
trellis plot-based layouts [3] (rows and columns) instead of x and y
encodings, (2) has many shortcuts to design techniques (e.g., wrap-
ping text, map visualizations, interactive flters) for which Vega-Lite
currently requires further specifcations, and (3) supports richer
communicative functionalities such as defning supplemental text
elements like multiple subtitles or captions, creating graphical em-
phases that are not bound to data, allowing diferent formats of
labels in the same axis, and so forth. The formal specifcation and
description of our extended Vega-Lite are in the Supplemental Ma-
terial.

5.1 Associated elements
Visualization elements can have associations between them, which
should inform how our Cicero compiler selects and handles the
elements. For example, axis labels are dependent on the range of
visualized data encoded by the x and y positions; hence, axis labels
are associated with the ranges of visualized data values (line 15–21
of Figure 13). When a subset of data is omitted under a responsive
transformation, then text annotations attached to the corresponding
marks should be omitted as well (line 5–10 of Figure 13).

We describe two principles involving associated elements. First,
our Cicero compiler detects associated elements depending on
how a user has defned the original design (P1). In the previ-
ous example (Figure 13), the two longer labels are declared as text
elements of the line marks (i.e., tied to the marks in the same layer;
{type: "on-mark", field: "forecasted_year", items:
[...], ...}). Thus, fltering out a subset of data subsequently
removes the corresponding marks and their associated labels. On
the other hand, if the user has declared the text elements directly
(without anchoring to certain data points), then the compiler

{ specifier: {
 role: “view” },
 action: “replace”,
 option: {
 from: { role: “column”,
 index: 0 },
 to: { role: “row”,
 index: 1 }}},

1
2
3
4
5
6
7
8

{ specifier: { role: “row”, field: “plan” },
 action: “modify”,
 option: {
 sort: {
 sortBy: [“Already passed”,
 “Republican plan”,
 “Democratic plan”] }}},

9
10
11
12
13
14
15

Figure 9: An example case (Aid Budget) for a downstream
efect to the layout of elements (moving a column axis to a
row axis; line 1–8) and applying a rule (reordering a nominal
y axis) to the previously transformed view (line 9–15).

should interpret them as independent elements that are not
subordinate to any other element(s) or data.

Second, a transformation afecting the layout of a series of
elements, such as adding, removing, or repositioning, has a down-
stream efect on the layout of their associated elements (P2),
but not the static style. We do not allow downstream changes to
style because the layout of one element and the static style of
another are not meaningfully related whereas the relative layout
between diferent elements does have a meaningful relationship.
In the previous example, fltering out data points should not im-
pact any independent, non-data annotations but should remove
any associated text element(s). Similarly, converting a feld from
the column to the row of the chart (partial transpose) should move
the axis labels (defned as {type: "on-axis", field: "plan",
items: [...], ...}; i.e., tied to the axis of the plan feld) for the
feld accordingly (see line 1–8 in Figure 9), but should not have side
efects to their other properties—like the font weight or font size.

5.2 Default behaviors
Declarative grammars often have default behaviors to make it eas-
ier to create a visualization. For example, Vega-Lite automatically
generates legends and axis labels as a user declares color/size and
position encoding channels. In compiling a Cicero specifcation, we
were able to relatively easily reason about default behaviors regard-
ing removing, modifying, and externalizing actions (e.g., “modify
only what is specifed” as a general software quality guideline or
“externalize annotations at the bottom of the chart unless speci-
fed otherwise” based on our examples). However, adding a new
element and internalizing an element can complicate the compile
process, particularly when a user has underspecifed the behavior.
For example, when a user adds a new text annotation in the chart
without specifying its position, then it is unclear how our Cicero
compiler should behave. To guide such complex situations, we used
a set of high-level default behaviors for our Cicero compiler.

First, when adding a new element to a series of elements,
its appearance should mimic the existing elements in the
series (P3). For example, line 7–9 in Figure 10 adds new values
for a vertical axis, resulting in newly added grid lines and labels.
Then, they should look similar to the existing grid lines and labels

https://osf.io/eg4xq

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

{ specifier: { role: “title” },
 action: “replace”,
 option: {
 to: { role: “annotation”,
 internal: true },
 separate: false }},

{ specifier: { role: “vAxis” },
 action: “add”,
 option: { values: [50, 150, 250] }},

1
2
3
4
5
6

7
8
9

Changed

Mimic

Adding two labels
with different types
to the horizontal axis

Source

Target

Figure 10: An example use case (Disaster Cost) for our Ci-
cero compiler’s default behavior for replacing the title as
an internal annotation (line 1–6) and for introducing newly
added elements (axis labels and grid lines; line 7–9).

without further specifying their appearance. Our Cicero compiler
performs this addition by including those values in line 9 to the axis
label and grid component in the specifcation (i.e., {..., values:
[100, 200, 300], ...} → {..., values: [50, 100, 150,
200, 250, 300], ...}).

Second, our Cicero compiler considers the appearance of ele-
ments in a similar role for new elements that are not part of
an existing series of elements (P4). For example, when adding
labels to a y axis that has no existing labels, although they are not
in the same series, it is more sensible to set their appearance similar
to the labels on the x axis rather than the default presets of the ren-
dering grammar. The similarity of the role between two series can
be determined by whether they can be specifed as the same role
keyword (e.g., {role: "axis.label"} can specify both {role:
"hAxis.label"} and {role: "vAxis.label"} if they both exist).
Then, our compiler reuses the appearance attributes of the similar
series of elements.

Third, when there are multiple series of existing elements,
our Cicero compiler selects the one with the most similar
structure (P5). As shown in Figure 11, for instance, when adding
a new label to an axis that has two groups of existing labels in
diferent styles, our Cicero compiler reasons about which of the
two groups is most similar to the new label. We use the number of
subelements (e.g., text segments) and the format of elements to fnd
the most similar series of elements. For our approach, the compiler
frst identifes the number of newly added text segments (two). The
one starting with “Jan. 19 ...” has two segments with diferent styles,
and the “Feb. 29” one has a single segment. Then, by comparing
the numbers of segments, the compiler matches the two-segment
one (“Jan. 19 ...”) with the new labels.

Lastly, we consider the case where the position and style of a
newly added or repositioned element cannot be fully determined
because there is no existing series with a similar role. In this case,
the compiler should leverage the following default behavior if not
specifed otherwise: as an overarching principle, use the default
options of the rendering grammar’s compiler (P6) for newly
added elements because users are expected to have some basic
knowledge about how the rendering grammar behaves. For example,
our extended Vega-Lite implementation does not automatically
generate a legend for a new color scale, so our Cicero compiler for
this extension similarly does not introduce a legend when adding
a new color encoding. On the other hand, Vega-Lite’s default is to
include a legend, so a Cicero compiler for Vega-Lite should add a

Figure 11: An example use case (Covid Spending 1) for our
Cicero compiler’s treatment of multiple series of existing el-
ements. In this case, our Cicero compiler adds new axis la-
bels by mimicking the most similar type of the existing axis
labels according to the number of subelements (text lines).

legend. We had the following default behaviours for cases where
the rendering grammar has no relevant default options based on
our observations of common responsive design principles:

• Place (new) externalized annotations below the chart (see a4
in Figure 14).

• Place (new) internalized data annotations (or mark labels) at
the center or the bottom of the associated data mark (see c4
in Figure 14).

• Place (new) internalized non-data annotations at the center
of the largest contiguous empty space in the chart (see line
1–6 in Figure 10).

5.3 Confict management
Cicero’s list-based specifcation explicitly indicates the order of de-
clared transformation rules. However, there are some cases where
the order of rules may impact how the Cicero compiler interprets
a given specifcation. Our compiler solves conficts using the fol-
lowing methods, some of which are inspired by relevant CSS prin-
ciples [22] that similarly deal with managing conficts between
ordered rule items. First, it may be confusing to select visualization
element(s) in a specifier when other rules in the specifcation
also transform the same element, which difers from general CSS
use cases. For example, suppose there is a rule to transpose the x
and y positions. This rule also results in swapping the horizontal
and vertical axes as they are associated with the x and y position
encoding channels. If a user wants to make some design changes
in an axis that is the horizontal axis after transposing but is the
vertical axis before transposing, defning a specifer for this rule
might be confusing. A simple approach defaults to always specify-
ing what is in the original view specifcation or what will appear
in the transformed view. However, the former may not be useful
for cases like making further changes to a newly added element,
and the latter might make it difcult to compose a specifcation by
requiring users to imagine the outcome status. As an overarching
principle, our compiler applies the current rule to a view that
has been transformed by the previous rules (P7) (e.g., line 1–8
and line 9–15 in Figure 9). This approach also implies that the com-
piler applies the last declared rule (P8) when there are two rules
making changes to the same element for the same property, which
is also a common practice with CSS specifcations. Our compiler

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

{ specifier: {
 role: “mark”,
 datum: {
 cat: “Apparel” },
 action: “modify”,
 option: {
 color: {
 value: “red”}}}

1
2
3
4
5
6
7
8

(a) More specific
{ specifier: {
 role: “mark” }
 action: “modify”,
 option: {
 color: {
 value: “gray”}}}

1
2
3
4
5
6

(b) Less specific

Figure 12: Rules to change the color of marks (a) by specify-
ing the mark for the “Apparel” category and (b) by generally
changing the color of all marks (independent of the data).

handles this principle by updating the target view specifcation for
each transformation rule.

Next, our compiler assigns higher priority to a more specifc
rule than a more generic rule for the same element (P9) (note:
not the same specifer)1. Here, the more attributes a specifier has,
the more specifc the rule is, inspired by CSS principles [23]. For
example, suppose a user wants to change the color of a mark for
the “Apparel” category (rule (a) in Figure 12) as well as changing
the color of all bars (rule (b)). Here, the mark for “Apparel” is af-
fected by both rules. Therefore, we recommend that generic color
changes to other bars should not be applied to the mark for the
“Apparel” category (i.e., rule (a) has higher priority than (b)). If a
user does not want to apply a specifc change (e.g., the custom color
for the “Apparel” mark), then the user should omit the rule from the
Cicero specifcation. Lastly, to enhance the degree of freedom in
indicating the priority of rules, Cicero provides an important prop-
erty for the same specifer, inspired by the !important keyword in
CSS [23]. Rules with the important property set to true have
higher priorities than others (P10) (i.e., compiled at the end).
For example, a rule that changes the color of every axis label with
{important: true} overrides another following rule that recolors
a specifc axis label2. We refer the reader to the Supplemental Mate-
rial for the full details on how our Cicero compiler for the extended
version Vega-Lite exhibits these principles.

6 REPRODUCING REAL-WORLD EXAMPLES
To demonstrate the expressiveness, fexibility, and reusability of
Cicero and illustrate the above principles of our Cicero compiler,
we present an in-depth walk-through of a mobile-to-desktop exam-
ple (Bond Yields) using our extended version of Vega-Lite as the
rendering grammar. We have twelve additional real-world inspired
walk-through specifcations that show the responsive changes step-
by-step and two other detailed textual walk-throughs in the Sup-
plemental Material that exhibit a variety of other transformations
to visualization elements (i.e., data, marks, axes, title, labels, anno-
tations, informational marks/emphasis, interaction, etc.) for both
desktop-to-mobile and mobile-to-desktop transformations. The to-
tal of 13 example use cases includes three from Hofswell et al. [13],
four cases from Kim et al. [16], three recent responsive visualiza-
tion cases (in our extended Vega-Lite), and two additional cases

1See the ‘Justice Kennedy’ case (desktop to mobile) in our Supplemental Material.
2See the ‘Disaster Cost’ case (desktop to mobile) in our Supplemental Material.

TransformedCicero transformations
...
{ specifier: { role: “view” },
 action: “modify”,
 option: { size: [365, 450] }},

{ specifier: {
 role: “data”,
 data: [
 year: { leq: 2011 },
 forecasted_year: { leq: 2011 }]
 action: “remove” },

1
2
3
4

5
6
7
8
9
10

Desktop Mobile

Axis change

{ specifier: {
 role: “mark”,
 mark: “area” },
 action: “remove” },

{ specifier: {
 role: “row”,
 field: “growth”, }
 action: “modify”,
 option: {
 scale: {
 domain: [3, 5] }}},

11
12
13
14

15
16
17
18
19
20
21

{ specifier: {
 role: “mark.label”,
 mark: “line”,
 text: {
 startsWith: “2016 forecast for” }},
 action: “reposition”,
 option: {
 dx: { by: -10 },
 dy: { by: -40 }}}
...

22
23
24
25
26
27
28
29
30
31

Figure 13: A walk-through example case of Bond Yields from
a desktop version (top left) to a mobile version (top right).
Starting with the desktop version, we frst resize the chart to
ft to a mobile screen (line 2–4), remove a subset of data for
earlier years (line 5–10), remove the area mark (line 11–14),
update grid lines by rescaling the domain of the y position
channel (line 15–21), and reposition the annotation (22–30).

from the Vega-Lite example gallery that were not originally respon-
sive but demonstrate the generalizability of our Cicero specifca-
tions to refne complex source views (in Vega-Lite). All 13 cases
are listed in Figure 1 and provided in the Supplemental Material
(https://osf.io/eg4xq).

6.1 A Walk-through Example: Bond Yields
The Bond Yields example3 visualizes changes to both the actual and
forecasted GDP growth rates over time. In the desktop version (Fig-
ure 13), the x position encodes the year from 2010 to 2021, and the

3https://www.wsj.com/graphics/how-bond-yields-got-this-low/

https://osf.io/eg4xq
https://www.wsj.com/graphics/how-bond-yields-got-this-low/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

y position indicates the GDP growth rate from 3.0 to 5.5. The area
mark and black line mark represent the actual GDP growth rate
from 2010 to 2015. The red and gray lines represent the fve-year
forecast of GDP growth rate for each year from 2010 to 2016; for ex-
ample, the leftmost red line shows the estimated GDP growth rates
for 2011 to 2015, as forecast in 2010. Transformations to produce
the mobile version include (1) reducing the chart size, (2) removing
the data points and labels for the forecast year of 2010 and 2011,
(3) omitting the area mark, (4) truncating the y axis, and (5) reposi-
tioning an annotation. The Cicero spec is shown in Figure 13a.

First, to resize the chart for a mobile phone, one can apply a
modify action to the entire view (line 2–4). The option object indi-
cates the size of 365 (width) × 450 (height) to ensure that the chart
fts a mobile phone without requiring horizontal scrolling. Alter-
natively, one can use {width: 365, height: 450} in the option.
Then, line 5–10 flters out (remove) the specifed data points to
simplify the view by reducing the information density. The data
keyword in the specifier means ⟨year ≤ 2011 (for the actual GDP
growth rate) OR forecast year ≤ 2011 (for the forecast)⟩. Filtering
out the data points removes (1) the two simple line marks for the
forecast year of 2010 and 2011, (2) the data annotation for forecast
year 2010, and (3) the corresponding parts of the area and black
line mark for the actual GDP growth rates because each of these
elements is associated with the fltered data (P2). This association
is determined by the original visualization structure; if the annota-
tions were declared as non-data elements, then the annotation for
the 2010 forecast would remain (P1).

The remove transformation in line 11–14 omits the area mark
specifed by the mark keyword. After fltering the earlier data, there
is wasted space along the y-axis that unnecessarily compresses
the data. To address this issue, the rule in line 15–21 changes the
scale domain of the row feld (growth) to [3,5], resulting in the re-
moval of the axis label and grid line for 5.5; the remaining elements
automatically adjust to fll the newly vacated space (P6).

Lastly, the reposition rule in line 22–30 moves the mark label.
Because there are many text elements associated with data marks
(e.g., year names for each line), a specifc text query is needed to
select the label to move. For this rule, one can use the startsWith
operator (line 25–26) to select elements with text starting
with the specifed string. Then, the option object changes the
relative horizontal and vertical position (dx and dy, respectively)
using the by operator which adds the specifed value to the origi-
nal value (i.e., moving the element by 10px left and by 40px upward).

7 POTENTIAL APPLICATIONS FOR CICERO
Declarative grammars are particularly valuable for their utility in
applications like visualization recommenders and authoring tools.
In particular, they can function as a common representation method
for diferent intelligent tools with similar purposes [41]. Visualiza-
tion systems often use their own “internal representation” methods
for their specifc purposes [41]. Suppose we have two recommender
models for diferent parts of a visualization (e.g., one for chart types
and the other for annotations and emphases) that use heteroge-
neous representation methods. If they are translated to Cicero, then
their recommender outcomes could be efectively combined to a

user-side application. In this section, we describe how we used
Cicero to represent a design space of responsive transformations
in a prototype design recommender for responsive visualization as
a proof of concept. We further discuss how Cicero might support
mixed-initiative authoring tools.

7.1 Responsive Visualization Recommender
As a case study for potential applications for Cicero, we developed
a recommender prototype for responsive visualization transfor-
mations using Answer Set Programming (ASP), which represents
knowledge in terms of facts, rules, and constraints [6]. Our rec-
ommender takes a source visualization specifcation expressed in
our extended version of Vega-Lite along with confguration pref-
erences (e.g., intended screen size, strategies that a user wants to
avoid, and a subset of data that can be omitted) which could hy-
pothetically be provided by a user. Our recommender is intended
to provide a diverse set of recommendations rather than showing
several “optimal” visualization with slight diferences. We encoded
a set of common responsive visualization strategies motivated by
prior work [13, 16] in ASP. Given the inputs and encoded strategies,
Clingo [10], an ASP solver, generates a search space of responsive
transformation strategy sets (corresponding to responsive visual-
ization designs). To rank these strategy sets, we encoded heuristic-
based costs that apply to individual strategies, and normalize and
aggregate these costs to rank strategy sets representing design
alternatives. We implemented three types of costs that apply to
individual strategies: “popularity” costs based on the frequency of
the strategy in prior analyses of professionally-designed responsive
visualizations [13, 16]; density costs, where strategies that reduce
information density are assigned lower cost than those that do not
in a desktop-frst pipeline, and vice versa in a mobile-frst pipeline;
and message preservation costs, where strategies (e.g., axis trans-
pose, disproportional rescaling) are assigned costs based on the
extent to which prior work proposes that they afect the implied
“message” of a visualization [16, 17].

In this pipeline, each recommended strategy set in the ASP for-
mat (e.g., do(transpose_axes).) are translated to a Cicero spec
(e.g., {specifier: {role: "view"}, action: "transpose"}).
While inference engines or models (e.g., ASP, ML, etc.) often employ
their own abstract expressions for computational purposes, sys-
tems need to translate such abstract expressions (e.g., to JavaScript,
Python, etc.) before utilizing them. For instance, ASP can efciently
perform logic problems, but the ASP expressions cannot be directly
used to execute actual tasks without translation. In the context
of responsive transformation, directly using ASP codes to trans-
form a visualization design specifcation (i.e., running JavaScript
codes for each ASP code) is likely to complicate the translation,
lacking modularization. For example, whenever a recommender
adds a new transformation strategy, the system has to look at every
detail of diferent use cases, and doing so may not be consistent
with the existing transformation strategies. This inconsistency in
turn makes it more difcult to debug and extend the recommender.
Instead, if we can translate those abstract transformations to sys-
tematic expressions like the Cicero grammar, then implementing
recommenders for responsive visualization only needs to focus on
generating a search space by modularizing the translation process.

Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(a) Resizing only (b) Removing data (c) Shortening
 labels

(d) Externalizing +
 numbering labels

Figure 14: Selected examples among top seven recommen-
dations for Bond Yields case from desktop to mobile. The
original design is shown in Figure 13.

This process is similar to how Draco translates ASP expressions to
Vega-Lite [33] and then renders a visualization [28].

Below, we illustrate example recommendations (Figure 14a) us-
ing our walk-through example (Section 6). We provide further de-
tails on our prototype recommender implementation, and describe
example recommendation cases below and in Supplemental Mate-
rial (https://osf.io/eg4xq). We emphasize, however, that our goal
in developing the prototype recommender is to demonstrate the
feasibility of using Cicero in such an approach, rather than to ar-
gue for the specifc implementation of the cost model we used. In
other words, our recommender should be interpreted as a proof of
concept of our approach, rather than as an ideal recommender.

7.1.1 Example: Bond Yields. To generate candidate mobile views
for the Bond Yields case, we include in the confguration the target
size of a mobile view and a subset of data that can be omitted (refer-
ring to the original design). The frst recommendation (Figure 14a)
is simply resized to the target size. For this change, our ASP recom-
mender returns do(set_width,365). and do(set_height,450).,
and these abstract descriptions are translated to corresponding Ci-
cero rules: {specifier: {role: "view"}, action: "modify",
option: {width: 365, height: 450}}. In the second recom-
mendation (b), the suggested omission is applied, similar to the
original mobile view except for the remaining area mark and axis
value for 5.5%. Our ASP engine expresses the transformation in an
abstract way (do(add_filter,f0)., where f0 is a pointer to the
user-suggested data flter statement), and then it is converted to
a proper Cicero rule, {specifier: {role: "data", data:
[...]}, action: "remove"}. The data annotations for
the forecast years of 2010 and 2016 are shortened by re-
moving the frst line (the red text) in the third recommen-
dation (c). For this change, our recommender converts
an ASP rule, do(remove_text_line,t2,0). where t2 is
a pointer to the annotations (or mark labels), to a Ci-
cero rule: {specifier: {role: "mark.label", field:
"forecasted_year", index: 2}, action: "remove",
option: {items: {index: 0}}}. The fourth recommendation
(d) externalizes the same data annotations below the chart with
numbering for reference to the data marks. For this transformation,
ASP rules, do(externalize,t2). and do(numbering,t2)., are
translated to a Cicero rule: {specifier: {role: "mark.label",

// A0&2: decrease X axis range
{ specifier: { role : “view” },
 action: “modify”,
 option: { width: 375 }}

// A9: decrease font size
{ specifier: { role : “text” },
 action: “modify”,
 option: { fontSize: { prod: 0.8 }}}

1
2
3
4
5
6
7
8
9

15px
12px

Figure 15: Expressing transformation strategies of Mobile-
VisFixer [40] in Cicero. Line 2–4: decreasing the range of the
x axis by reducing the width of the chart. Line 7–9: decreas-
ing the font size using prod keyword.

field: "forecasted_year", index: 2}, action: "modify",
option: {external: true, number: true}}. If the ASP rules
were not compiled into our modularized Cicero grammar, the
required changes to the original visualization specifcation would
need to directly dissect many diferent parts of the specifcation,
such as data, annotations, and axes. By modularizing this computa-
tion, Cicero can provide a more systematic representation of those
changes, which helps extend and debug our recommender.

7.1.2 Generalizability for Recommenders. Cicero can enhance mod-
ularization of responsive visualization tools by connecting tool-
specifc expressions and visualization grammars. For example, our
recommender prototype uses ASP [6] to encode expressions with
the Clingo solver [10]), and the Cicero compiler connects recom-
mendations expressed in ASP to visualizations in our extended
Vega-Lite. Future work might start to leverage Cicero with machine
learning-based recommenders. For instance, Cicero can express
reusable transformation rules in MobileVisFixer [40] that trans-
lates non-responsively designed visualizations to mobile views. As
shown in line 2–4 of Figure 15, Cicero expresses ‘reducing the range
of x axis’ by expressing the change to the chart width (e.g., 375
pixel for mobile screens). Using the prod keyword in line 9, one
can express reducing the font size of all the text elements relatively.
In the Supplemental Material, we provide a list of reusable Cicero
expressions for MobileVisFixer [40] rules of which the meanings
are clearly defned.

7.2 Mixed-initiative Authoring Tools
Users of visualization authoring tools may prefer diferent levels
of customization and automation [25]. Tools like Microsoft Power
BI [9], which automates design recommendations by converting a
source visualizations using a set of default strategies, allow quick
visualization creation, but can limit design expressiveness. In con-
trast, while the prototype proposed by Hofswell et al. [13] and
DataWrapper [1] do not have automated recommendation features,
they enable more customization in making responsive designs.

Mixed-initiative authoring tools can provide a balance of au-
tomation and customization capabilities, by allowing authors the
ability to make manual responsive transformations or accept recom-
mender-suggested transformations. Mixed-initiative authoring has
been applied in exploratory data analysis (e.g., Voyager [38] and Dz-
iban [20]) and dashboard design (e.g., LADV [21]) settings. While
our prototype recommender takes as input a representation of
users’ preferences, a next-generation authoring tool might aim to

https://osf.io/eg4xq

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kim, et al.

reason about responsive transformations that the user makes so
as to recommend further or alternative transformations. For exam-
ple, imagine creating the Bond Yields case (Section 6.1) without
data fltering. After resizing, the target visualization might look
dense (Figure 14a1) although it maintains more takeaways com-
pared to the actual design. Then, a user might decide to externalize
the annotations instead of removing data. Following this manual
change, a mixed-initiative authoring tool might suggest numbering
the externalized annotations to support fnding data references.

A mixed-initiative approach stands to reduce computational
complexity by looking at the current state of edits rather than rea-
soning over a larger space of transformation combinations. Within
a mixed-initiative authoring pipeline for responsive visualization,
Cicero can be used to represent both system-recommended trans-
formation strategies and user-driven manual edits, which can make
such systems easier and more efcient to handle diferent sources
of transformations (system and user). In addition, when an author
updates the source visualization, Cicero can be used to reapply
previous rules that are generalized to the updated chart (i.e., rules
with the specifers that can make queries from the updated chart).

8 LIMITATIONS
While Cicero and the Cicero compiler for our extended version
of Vega-Lite can reproduce real-world use cases that represent a
diverse set of transformations, future work should apply Cicero
and future Cicero compilers to a bigger set of use cases to improve
them and further extend the expressiveness of the grammar. For
example, future work might focus on expressing complex user in-
teractions (e.g., pan+zoom for a 3D visualization) with specifiers,
inspired by declarative grammars for interactive visualizations
(e.g., trigger, signal, and event streams in Vega [14, 34]), to
better facilitate the application of such technologies to Web con-
texts where they have largely been underutilized [13, 16]. Another
interesting future direction could be expressions for bounded dy-
namic behavior—the sizes or arrangement of elements dynamically
change up to a certain limit, such as max-width and flex-wrap in
CSS—in options. As it is a Web browser that implements CSS spec-
ifcations, additional expressions for bounded dynamic behavior
will be useful only if a rendering grammar supports such behav-
ior. Furthermore, new design and evaluation studies for intelligent
responsive authoring tools with Cicero might be useful to extend
both Cicero and prior approaches in responsive visualization tool-
ing [13, 16, 17, 19, 29, 40, 42, 44].

Next, to demonstrate the full potential of Cicero in Web-based
communicative visualizations, we chose to implement an extended
version of Vega-Lite that can more easily express common tech-
niques for narrative visualizations, such as externalizing annota-
tions and applying word wrap to text labels. These capabilities are
not straightforward to implement in Vega-Lite [13], so the result-
ing capabilities of a Cicero compiler for Vega-Lite may likewise
be limited in what can be expressed in rendered visualizations. As
such grammars continue to develop, the corresponding compiler
can be refned to support additional responsive functionalities. Fur-
thermore, future work might need to apply these techniques to a

larger class of declarative systems, such as extensions based on gg-
plot2 [37] or Vega [34], to efciently implement the corresponding
Cicero compilers with a better understanding of their capabilities.

Finally, a Cicero specifcation defnes a set of transformations
to create a single responsive version and itself is not intended for
direct rendering. As multiple responsive versions are necessary for
diferent device types, an authoring system could bundle multiple
Cicero specifcations as a family using the metadata object in the
specifcations to decide when to apply each of them.

9 CONCLUSION
We contribute Cicero, a declarative grammar for specifying re-
sponsive transformations from a source to a target visualization.
By enabling fexible, expressive, and reusable specifcations of vi-
sualization transformations, Cicero paves the way for intelligent
responsive visualization authoring tools, by providing a concise set
of action predicates that enable encoding diverse transformations,
fexible specifer syntax for handling the behavior of transforma-
tions, and reusability of transformation rules. To demonstrate the
utility of Cicero in the context of intelligent visualization tools, we
leverage Cicero for a prototype design recommender for respon-
sive transformations. Future work can employ Cicero for a range
of responsive visualization authoring tools designed for specifc
declarative grammars with custom compilers for those grammars.

REFERENCES
[1] 2012. DataWrapper. https://www.datawrapper.de/ Last accessed: Jun. 2, 2021.
[2] Keith Andrews. 2018. Responsive Visualisation. In MobileVis ‘18 Workshop at CHI

2018. ACM.
[3] Richard A. Becker, William S. Cleveland, and Ming-Jen Shyu. 1996. The Visual

Design and Control of Trellis Display. Journal of Computational and Graphical
Statistics 5, 2 (1996), 123–155. https://doi.org/10.1080/10618600.1996.10474701

[4] Elliot Bentley. 2021. The Web as medium for data visualization. In The Data
Journalism Handbook: Towards a Critical Data Practice, Liliana Bounegru and
Jonathan Gray (Eds.). Amsterdam University Press, 182–192. https://doi.org/10.
5117/9789462989511

[5] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[6] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. 2011. Answer Set
Programming at a Glance. Commun. ACM (2011). https://doi.org/10.1145/
2043174.2043195

[7] Jay Bryant and Mike Jones. 2012. Responsive Web Design. Apress, Berkeley, CA,
37–49. https://doi.org/10.1007/978-1-4302-4525-4_4

[8] E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. 2015. Network visual-
ization retargeting. In 2015 6th International Conference on Information, Intelli-
gence, Systems and Applications (IISA). 1–6. https://doi.org/10.1109/IISA.2015.
7388095

[9] Roy Gal. 2017. Responsive visualizations coming to Power BI. https://powerbi.
microsoft.com/en-us/blog/responsive-visualizations-coming-to-power-bi/ Last
accessed: Jun. 2, 2021.

[10] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
2014. Clingo = ASP + Control: Preliminary Report. (2014). arXiv:1405.3694
https://arxiv.org/abs/1405.3694.

[11] Google. 2019. Using Google Charts. https://developers-dot-devsite-v2-prod.
appspot.com/chart/interactive/docs Last accessed: Sept. 11, 2020.

[12] Jane Hofswell, Alan Borning, and Jefrey Heer. 2018. SetCoLa: High-Level
Constraints for Graph Layout. In Computer Graphics Forum (Proc. EuroVis). https:
//doi.org/10.1111/cgf.13440

[13] Jane Hofswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for Flexible
Responsive Visualization Design. In ACM Human Factors in Computing Systems
(CHI). https://doi.org/10.1145/3313831.3376777

[14] IDL. 2017. Documentation–Vega. https://vega.github.io/vega/docs/ Last accessed:
Sept. 9, 2021.

[15] M. R. Jakobsen and K. Hornbæk. 2013. Interactive Visualizations on Large and
Small Displays: The Interrelation of Display Size, Information Space, and Scale.
IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2336–
2345. https://doi.org/10.1109/TVCG.2013.170

https://www.datawrapper.de/
https://doi.org/10.1080/10618600.1996.10474701
https://doi.org/10.5117/9789462989511
https://doi.org/10.5117/9789462989511
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/978-1-4302-4525-4_4
https://doi.org/10.1109/IISA.2015.7388095
https://doi.org/10.1109/IISA.2015.7388095
https://powerbi.microsoft.com/en-us/blog/responsive-visualizations-coming-to-power-bi/
https://powerbi.microsoft.com/en-us/blog/responsive-visualizations-coming-to-power-bi/
https://arxiv.org/abs/1405.3694
https://arxiv.org/abs/1405.3694
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs
https://developers-dot-devsite-v2-prod.appspot.com/chart/interactive/docs
https://doi.org/10.1111/cgf.13440
https://doi.org/10.1111/cgf.13440
https://doi.org/10.1145/3313831.3376777
https://vega.github.io/vega/docs/
https://doi.org/10.1109/TVCG.2013.170

Cicero: A Declarative Grammar for Responsive Visualization

[16] Hyeok Kim, Dominik Mortiz, and Jessica Hullman. 2021. Design Patterns and
Trade-Ofs in Authoring Communication-Oriented Responsive Visualization.
Computer Graphics Forum (Proc. EuroVis) 40 (2021), 00–00. Issue 3. https://doi.
org/10.1111/cgf.14321

[17] Hyeok Kim, Ryan Rossi, Abhraneel Sarma, Dominik Mortiz, and Jessica Hullman.
2021. An Automated Approach to Reasoning About Task-Oriented Insights in
Responsive Visualization. To Appear IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis) (2021). https://arxiv.org/abs/2107.08141.

[18] Younghoon Kim and Jefrey Heer. 2021. Gemini: A Grammar and Recommender
System for Animated Transitions in Statistical Graphics. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis) (2021). https://doi.org/10.1109/TVCG.2020.
3030360

[19] Juliana Leclaire and Aurélien Tabard. 2015. R3S.js–Towards Responsive Visu-
alizations. In Workshop on Data Exploration for Interactive Surfaces DEXIS 2015.
16–19.

[20] Halden Lin, Dominik Moritz, and Jefrey Heer. 2020. Dziban: Balancing Agency
& Automation in Visualization Design via Anchored Recommendations. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI
’20). 12. https://doi.org/10.1145/3313831.3376880

[21] Ruixian Ma, Honghui Mei, Huihua Guan, Wei Huang, Fan Zhang, Chengye
Xin, Wenzhuo Dai, Xiao Wen, and Wei Chen. 2021. LADV: Deep Learning
Assisted Authoring of Dashboard Visualizations From Images and Sketches. IEEE
Transactions on Visualization and Computer Graphics 27, 9 (2021), 3717–3732.
https://doi.org/10.1109/TVCG.2020.2980227

[22] MDN. n.d.. Cascade and inheritance. https://developer.mozilla.org/en-US/
docs/Learn/CSS/Building_blocks/Cascade_and_inheritance Last accessed Aug
13, 2021.

[23] MDN. n.d.. Specifcity. https://developer.mozilla.org/en-US/docs/Web/CSS/
Specifcity Last accessed Dec 15, 2021.

[24] MDN. n.d.. Using media queries. https://developer.mozilla.org/en-US/docs/Web/
CSS/Media_Queries/Using_media_queries Last accessed Sept 4, 2021.

[25] Gonzalo Gabriel Méndez, Uta Hinrichs, and Miguel A. Nacenta. 2017. Bottom-up
vs. Top-down: Trade-Ofs in Efciency, Understanding, Freedom and Creativity
with InfoVis Tools. Association for Computing Machinery, New York, NY, USA,
841–852. https://doi.org/10.1145/3025453.3025942

[26] Microsoft. 2011. Power BI. https://powerplatform.microsoft.com/en-us/.
[27] S. Mohorovičić. 2013. Implementing responsive web design for enhanced web

presence. In 2013 36th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). 1206–1210.

[28] Dominik Moritz, Chenglong Wang, Gregory Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and Jefrey Heer. 2019. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis) (2019). https://doi.org/10.1109/TVCG.2018.
2865240

[29] Lisa C. Rost. 2020. Create better, more responsive text annotations (yes, also on
maps). https://blog.datawrapper.de/better-more-responsive-annotations-in-
datawrapper-data-visualizations/ Last accessed: Jun. 2, 2021.

[30] Lisa C. Rost and Gregor Aisch. 2020. Our new Tables: responsive, with sparklines,
bar charts and sticky rows. https://blog.datawrapper.de/new-table-tool-

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

barcharts-fxed-rows-responsive-2/ Last accessed: Jun. 2, 2021.
[31] Cedric Sam. 2018. Ai2html and Its Impact on the News Graphics Industry.

In MobileVis ‘18 Workshop at CHI 2018. https://mobilevis.github.io/assets/
mobilevis2018_paper_20.pdf.

[32] Arvind Satyanarayan and Jefrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment. Computer Graphics Forum 33, 3 (2014), 351–360. https:
//doi.org/10.1111/cgf.12391

[33] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis) (2017). https://doi.org/10.1109/TVCG.2016.2599030

[34] Arvind Satyanarayan, Ryan Russell, Jane Hofswell, and Jefrey Heer. 2016. Re-
active Vega: A Streaming Datafow Architecture for Declarative Interactive Vi-
sualization. In IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis ’15).
https://doi.org/10.1109/TVCG.2015.2467091

[35] Archie Tse. 2011. ai2html. http://ai2html.org/.
[36] Jacob VanderPlas, Brian Granger, Jefrey Heer, Dominik Moritz, Kanit Wong-

suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. Journal of
Open Source Software 3, 32 (2018), 1057. https://doi.org/10.21105/joss.01057

[37] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Compu-
tational and Graphical Statistics 19, 1 (2010), 3–28. https://doi.org/10.1198/jcgs.
2009.07098

[38] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jefrey Heer. 2016. Voyager: Exploratory Analysis via Faceted Brows-
ing of Visualization Recommendations. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (2016), 649–658.

[39] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jefrey Heer. 2017. Voyager 2:
Augmenting visual analysis with partial view specifcations. Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (2017), 2648–2659.
https://doi.org/10.1145/3025453.3025768

[40] Aoyu Wu, Wai Tong, Tim Dwyer, Bongshin Lee, Petra Isenberg, and Huamin
Qu. 2021. MobileVisFixer: Tailoring Web Visualizations for Mobile Phones
Leveraging an Explainable Reinforcement Learning Framework. IEEE Trans-
actions on Visualization and Computer Graphics 27, 2 (2021), 464–474. https:
//doi.org/10.1109/TVCG.2020.3030423

[41] Aoyu Wu, Yun Wang, Xinhuan Shu, Dominik Moritz, Weiwei Cui, Haidong
Zhang, Dongmei Zhang, and Huamin Qu. 2021. AI4VIS: Survey on Artifcial
Intelligence Approaches for Data Visualization. IEEE Transactions on Visualization
and Computer Graphics (2021), 1–1. https://doi.org/10.1109/TVCG.2021.3099002

[42] Aoyu Wu, Liwenhan Xie, Bongshin Lee, Yun Wang, Weiwei Cui, and Huamin
Qu. 2021. Learning to Automate Chart Layout Confgurations Using Crowdsourced
Paired Comparison. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3411764.3445179

[43] Yingcai Wu, Xiaotong Liu, Shixia Liu, and Kwan-Liu Ma. 2012. ViSizer: a visual-
ization resizing framework. IEEE Trans. Visualization & Comp. Graphics (2012).
https://doi.org/10.1109/TVCG.2012.114

[44] ZingSoft. 2009. ZingChart. https://www.zingchart.com/.

https://doi.org/10.1111/cgf.14321
https://doi.org/10.1111/cgf.14321
https://arxiv.org/abs/2107.08141
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1109/TVCG.2020.3030360
https://doi.org/10.1145/3313831.3376880
https://doi.org/10.1109/TVCG.2020.2980227
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_and_inheritance
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_and_inheritance
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://doi.org/10.1145/3025453.3025942
https://powerplatform.microsoft.com/en-us/
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://blog.datawrapper.de/better-more-responsive-annotations-in-datawrapper-data-visualizations/
https://blog.datawrapper.de/better-more-responsive-annotations-in-datawrapper-data-visualizations/
https://blog.datawrapper.de/new-table-tool-barcharts-fixed-rows-responsive-2/
https://blog.datawrapper.de/new-table-tool-barcharts-fixed-rows-responsive-2/
https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf
https://mobilevis.github.io/assets/mobilevis2018_paper_20.pdf
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
http://ai2html.org/
https://doi.org/10.21105/joss.01057
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2020.3030423
https://doi.org/10.1109/TVCG.2020.3030423
https://doi.org/10.1109/TVCG.2021.3099002
https://doi.org/10.1145/3411764.3445179
https://doi.org/10.1109/TVCG.2012.114
https://www.zingchart.com/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Responsive Visualization
	2.2 Declarative Visualization Grammars

	3 Three Design Guidelines for a Responsive Visualization Grammar
	4 Responsive Visualization Grammar
	4.1 Specifier: Selecting elements to transform
	4.2 Action & Option: Applying transformations
	4.3 Reusability of Cicero Expressions

	5 Principles for Our Cicero Compiler
	5.1 Associated elements
	5.2 Default behaviors
	5.3 Conflict management

	6 Reproducing Real-World Examples
	6.1 A Walk-through Example: Bond Yields

	7 Potential Applications for Cicero
	7.1 Responsive Visualization Recommender
	7.2 Mixed-initiative Authoring Tools

	8 Limitations
	9 Conclusion
	References

