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version suggested by Hofswell et al. [13]. Full size images are included in the Supplemental Material (https://osf.io/eg4xq). 

1: Thirteen responsive visualization use cases reproduced using Cicero. The blue- and gray-bordered views are the

ABSTRACT 
Designing responsive visualizations can be cast as applying trans-
formations to a source view to render it suitable for a diferent 
screen size. However, designing responsive visualizations is often 
tedious as authors must manually apply and reason about candi-
date transformations. We present Cicero, a declarative grammar 
for concisely specifying responsive visualization transformations 
which paves the way for more intelligent responsive visualization 
authoring tools. Cicero’s fexible specifer syntax allows authors 
to select visualization elements to transform, independent of the 
source view’s structure. Cicero encodes a concise set of actions 
to encode a diverse set of transformations in both desktop-frst 
and mobile-frst design processes. Authors can ultimately reuse 
design-agnostic transformations across diferent visualizations. To 
demonstrate the utility of Cicero, we develop a compiler to an 
extended version of Vega-Lite, and provide principles for our com-
piler. We further discuss the incorporation of Cicero into responsive 
visualization authoring tools, such as a design recommender. 
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1 INTRODUCTION 
Responsive visualizations adapt visualization content for diferent 
screen types, making them essential for most Web-based contexts 
due to an increasing proportion of mobile viewers. Responsive 
visualization authoring environments, however, tend to require 
considerable manual efort on the part of visualization designers. 
Prior fndings on responsive visualization design practices [13, 16] 
indicate that authors often start from a source view and then ap-
ply responsive transformations to produce a set of target views 
optimized for diferent screen types. However, this approach can 
be tedious as authors must manually explore, apply, and evaluate 
diferent responsive strategies one by one. For example, authors 
might create responsive views by crafting an artboard and/or spec-
ifcation per responsive view, which is particularly problematic 
when one of the responsive views is revised. They may have dif-
culty in expressing changes that occur across a design specifcation 
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mark: { 
  type: “bar”, 
  yOffset: 5,
  ... }, 
encoding: {
  y: {
    ...
    axis: { 
      ...
      labelAlign: “left”,
      labelBaseline: “middle”,
      labelPadding: -5,
      labelOffset: -15, ... 
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mark: { type: “bar”, 
  ... }, 
encoding: {
  y: {
    ...
    axis: { ... }, ...
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Label-mark serialization Label-mark parallelization

(a1) Using Vega-Lite (b1) Using Vega-Lite

{ specifier: {
    role: “axis.label” }}, 
  action: “transpose”,
  option: { 
    serial: true }}, ...
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(a2) Using Cicero
{ specifier: {
    role: “axis.label” }}, 
  action: “transpose”,
  option: { 
    serial: false }}, ...

7
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9
10
11

(b2) Using Cicero

Figure 2: Design specifcations for label-mark serialization 
using (a1) Vega-Lite and (a2) Cicero and parallelization using 
(b1) Vega-Lite and (b2) Cicero. 

(e.g., example cases in Figure 2 and Figure 3). Authoring painpoints 
like these suggest a need for more intelligent authoring tools, such 
as semi- or fully automated recommenders that support exploring 
and reasoning about responsive design strategies [16, 17]. 

A key step toward such intelligent responsive visualization au-
thoring tools is a concise, declarative grammar that can express a 
diverse set of transformation strategies. While declarative visualiza-
tion grammars like Vega [34] and Vega-Lite [33] are well suited to 
developing more sophisticated visualization authoring tools, they 
are not necessarily well suited to representing visualization transfor-
mations; Hofswell et al. [13] observe that diferent edit properties 
for text and marks in Vega-Lite [33] make it complicated to create 
the specifcations for multiple versions of a visualization despite its 
high expressiveness. Indeed, many responsive visualization strate-
gies that researchers have identifed [16] can be written in Vega-Lite 
with high complexity. For instance, serializing labels and marks 
using Vega-Lite (i.e., placing them in a vertical order [16]) requires 
layout adjustment keywords (Figure 2a1, line 7, 19–22), while par-
allelizing them (i.e., arraying them horizontally) does not require 
layout modifcations in Vega-Lite (Figure 2b1, line 14). Whereas 
Vega-Lite requires authors to create separate specifcations for each 
responsive view that interleave complex layout changes throughout 
the specifcations, a declarative grammar for responsive transfor-
mations can express the same strategies in a simpler way as shown 
in Figure 2 (a2) and (b2). Such an approach can help visualization 
authors easily and quickly compose responsive design specifca-
tions and can help developers to more efectively develop authoring 
tools for responsive visualization. 

To this end, we present Cicero: a fexible, expressive, and reusable 
declarative grammar for specifying responsive visualization trans-
formations. The fexible specifer syntax of Cicero enables querying 
visualization elements using their role (e.g., mark, axis labels, title), 

underlying data, and attributes of visualization elements, indepen-
dent of the structure of a source view specifcation. Cicero pro-
vides a compact set of action predicates (add, duplicate, remove, 
replace, swap, modify, reposition, and transpose) that can en-
code a diverse range of transformation techniques (Figure 5c). More-
over, Cicero supports extracting and reusing generalizable trans-
formations strategies across multiple responsive specifcations. For 
example, the expressions (a2) and (b2) in Figure 2 can be reused on 
other visualizations with bar-like marks and axis labels. 

To demonstrate the utility of Cicero, we develop a Cicero com-
piler for an extended version of Vega-Lite that we adapted to sup-
port annotations and other narrative devices and reproduce 13 
real-world examples in Cicero (Section 6). We provide a set of prin-
ciples for developing our Cicero compiler in terms of desirable 
properties of the association of visualization elements, preferable 
default behavior, and how to manage conficts between transforma-
tions (Section 5). As Cicero is agnostic to the underlying structure of 
a source visualization, it can be leveraged in diferent visualization 
authoring tools. To demonstrate the feasibility of Cicero in such 
authoring tools, we describe how Cicero applies to a prototype rec-
ommender we developed for responsive transformations as a proof 
of concept and envision an approach to mixed-initiative authoring 
tools (Section 7). Future work can implement a Cicero compiler 
for other declarative grammars like the original Vega-Lite [33] or 
ggplot2 [37] and other recommender approaches (e.g., [40]). 

2 RELATED WORK 
This work is motivated by prior research on responsive visualization 
and declarative visualization grammars. 

2.1 Responsive Visualization 
Prior research has examined how visualization authors customize 
a visualization for smaller screens in terms of visual elements and 
structure [2, 8, 43], and interaction methods [15]. For instance, VI-
Sizer [43] provides a point-of-interest-based framework to resize 
a visualization while preserving regions with important insights. 
Recent works [13, 16] provide a more comprehensive snapshot of 
current responsive visualization design practices. Motivated by a 
qualitative analysis of 231 responsive visualizations and a forma-
tive interview study, Hofswell et al. [13] implement an authoring 
tool that supports editing across diferent responsive views via 
simultaneous previews and global edits, as well as view-specifc 
customization. Using a similar approach, Kim et al. [16] present a 
set of responsive visualization design patterns and identify a trade-
of between achieving appropriate graphical density for each view 
and preserving intended takeaways across transformations. To ad-
dress the trade-of between density and takeaways, Kim et al. [17] 
provide a set of task-oriented insight preservation measures for 
a responsive visualization recommender limited to a small set of 
design transformations (e.g., aggregation, axes-transposing). A re-
cent machine learning-based approach [40, 42] provides automated 
methods to confgure visualization layouts based on the chart size 
using a set of simple heuristics, yet it does not ofer a grammar that 
can express a large set of responsive visualization techniques. 

Responsive design has been well-studied for the Web more gen-
erally [7, 27], but such techniques are not directly applicable to 
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responsive visualization design because they are intended for Web 
layouts and based on limited knowledge of visualization design. 
For example, CSS media queries [24] express breakpoints for each 
responsive version of the contents. CSS specifcations under a me-
dia query of @media screen and max-width 600px are shown 
only on a screen-side application (e.g., Web browser) with width ≤ 
600px. Similarly, CSS specifcations under a media query of @media 
speech are used by speech synthesizers like a screen reader. How-
ever, using CSS alone cannot enable specifcation of many respon-
sive transformations specifc to visualization, such as transposing 
axis (requiring changes to scale functions), un-fxing tooltip posi-
tions, changing mark types (requiring dynamic positioning), and 
transforming data (requiring custom JavaScript functions). 

In practice, designers create responsive visualizations with mul-
tiple tools in an iterative manner. D3.js [5] is a highly expressive 
JavaScript (JS) library for SVG- or Canvas-based visualizations. Ac-
cording to prior work on visualization authoring practices [4, 31], 
designers often use D3.js (or equivalent tools) with ai2html [35], 
which renders Adobe Illustrator vector images (.ai fles) to HTML. 
Designers frst draw a visualization using D3.js [5], then load and 
edit the SVG graphic of the visualization as responsive ‘artboards’ 
in Adobe Illustrator [31]. Authors can also defne responsive condi-
tion parameters for interactive visualizations using D3.js (e.g., scale 
functions for x and y positions to be swapped for mobile screen). 
R3S.js [19] ofers programming interfaces for such parameteriza-
tion by extending D3.js [5]. However, it is not fully declarative, so 
authors need to imperatively defne each transformation, which re-
quires programming expertise. For example, to reposition a tooltip, 
which is a common responsive transformation strategy [16], R3S.js 
requires the use of custom CSS rules and/or JS functions. 

For simple charts and quick edits, authors can utilize responsive 
properties of existing tools like Vega, Google Chart, and Microsoft 
Power BI. While Vega [34] and Vega-Lite [33] support some ‘sensi-
ble’ defaults, such as ftting the number of axis labels to the chart 
size, users need to have fully defned specifcations for each of the 
responsive views. Google Chart [11] ofers several default settings 
for mobile views such as truncating labels with an ellipsis (...). Power 
BI [26] provides defaults for responsiveness (e.g., making a visu-
alization scrollable, rearranging legends, removing axis, etc.) [9]. 
While these tools can simplify the design process, their limited 
expressiveness may prevent authors from specifying intended re-
sponsive transformations, limiting their ability to convey insights. 

Lastly, commercial tools like ZingChart and DataWrapper al-
low for responsive settings. ZingChart [44] provides ‘media rules’ 
through which a designer can declare a screen size condition for a 
visualization element (e.g., label: ‘October 4’ for screen size > 500 
and ‘Oct. 4’ for screen size < 500). However, those media rules are 
dependent on the chart type—for example, transposing a scatterplot 
and a bar chart requires changes to data structure and the chart 
type, respectively—which limits the expressiveness and fexibility 
for responsive transformations. DataWrapper [1], an authoring 
tool for communicative visualizations, allows authors to choose 
whether and how to show a visualization element for mobile screens 
(e.g., showing a table as a stack of cards [30], or numbering annota-
tions [29]). However, it is not available in the form of a declarative 
grammar which limits how easily it can be extended or applied to 
future authoring tools, such as a mixed-initiative authoring tool. 

2.2 Declarative Visualization Grammars 
Declarative grammars help visualization authors to avoid complex 
programming through a compiler that implements user-declared 
specifcations (e.g., [12, 18, 28, 33, 34, 37]). For example, a Vega-
Lite [33] specifcation uses JavaScript object notation (JSON) to 
encode chart size, data source and transformation, visual encodings, 
multiple views, and user interactions using predefned primitives. 
Some declarative grammars target specifc use-cases by leveraging 
more general-purpose grammars. For example, Gemini’s animated 
transition grammar formalizes chart animation entities [18] based 
on starting and ending visualizations specifed using Vega [34]. 
Moreover, declarative grammars facilitate computational opera-
tions on visualization specifcation, which enables the develop-
ment of useful visualization applications on top of the underlying 
grammar. For example, many end-user tools like visualization rec-
ommender(s) [28, 38, 39] and editor(s) [32] use Vega-Lite [33] to 
represent the visualization design specifcation. In responsive visu-
alization settings, Hofswell et al. [13] provide a design editor using 
Vega-Lite [33], and Kim et al. [17] propose automated recommen-
dation of responsive visualization designs using Draco [28]. 

However, existing declarative visualization grammars are often 
limited when it comes to supporting expressive responsive visu-
alization designs. For example, common responsive visualization 
strategies like fxing a tooltip position, aggregation, internalizing 
labels, and externalizing annotations (c.f. [16]) are not supported 
or are complicated to specify in Vega-Lite [33]. In addition, many 
commonly used visualization grammars (e.g., ggplot2 [37], Vega-
Lite [33]) require authors to defne multiple full visualization speci-
fcations for each responsive view, which makes it difcult to prop-
agate changes from one design to another. ZingChart [44] provides 
‘media rules’ to specify conditions for responsive properties, yet 
it is often difcult (or impossible) to express a large set of design 
transformations like transposing layout or changing mark types. 

Our approach proposes a novel declarative grammar that can 
express various responsive transformations, accompanied by a com-
piler built on an extended version of Vega-Lite. To demonstrate the 
utility of Cicero for visualization tooling, we develop a proof-of-
concept prototype recommender for responsive design transforma-
tions that encodes a larger set of design strategies than the scope 
of Kim et al. [17], using Cicero as the representation method. 

3 THREE DESIGN GUIDELINES FOR A 
RESPONSIVE VISUALIZATION GRAMMAR 

We derive three central design guidelines for a responsive visual-
ization grammar based on prior work [2, 4, 13, 16, 19, 31, 44]. 

(D1) Be expressive. A responsive visualization grammar should be 
able to express a diverse set of responsive design strategies spanning 
diferent visualization elements. One approach is to characterize 
a responsive transformation strategy as a tuple of the visualiza-
tion element(s) to change and a transformation action [13, 16]. 
Selecting visualization element(s) should support varying levels 
of customization for responsive transformations because trans-
formations can include both systematic changes (e.g., externaliz-
ing all text annotations or shortening axis labels) and individual 
changes (e.g., externalizing a subset of annotations or highlighting 
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Figure 3: Responsive transformation from axis labels to a 
legend accompanied by a layout change for smaller display. 

a particular mark) [16]. A grammar needs to express responsive 
transformations as a concise set of ‘actions’ describing how visu-
alization elements are changed [13, 16]. To be expressive, our 
grammar provides (1) a query syntax for selecting visualiza-
tion elements both systematically and individually and (2) 
consistent, high-level action predicates that can encode a di-
verse set of responsive design strategies. 

(D2) Be fexible. A responsive visualization grammar should ofer 
fexibility in how an author can specify the behavior of an entity 
under a responsive transformation, independent of how the entity 
is expressed in the specifcation (or structure) of the source visu-
alization. For example, suppose a visualization that has a nominal 
color encoding that maps dog, cat, and fox to red, blue, and green. 
Then, to select red marks, some authors can specify simply “red 
marks” (using attribute) while others can make the same selection 
by specifying “marks for dog” (using data). Furthermore, responsive 
transformations can occur across diferent visualization elements. 
For instance, as illustrated in Figure 3, one can change the layout 
by moving a column element to the row (partial view transpose) 
to accommodate a portrait aspect ratio. Following the previous 
transformation, the column labels can be replaced with a legend 
if there is a redundant mark property encoding. To be fexible, 
our responsive visualization grammar supports multiple ex-
pressions for specifying visualization elements that can be 
independent of the structure of a visualization. 

(D3) Be reusable. A responsive visualization grammar should en-
able authors to easily (i.e., without making big changes) reapply 
generalizable responsive transformations across diferent visual-
izations. While reuse is straightforward for visualizations sharing 
the same properties, many responsive designs utilize generic trans-
formations that are independent of the specifc chart design, data, 
or base visualization (e.g., transposing the layout, numbering an-
notations, using a fxed tooltip position). Moreover, authors might 
want to repeat techniques only for certain features of a visualiza-
tion (e.g., removing a data feld regardless of chart type). To be 
reusable, our responsive visualization grammar represents 
each responsive transformation in a form that helps users 
to easily extract and apply transformations to other views. 

With these guidelines in mind, there are several possible ap-
proaches for specifying responsive transformations, such as: (1) dec-
orating a complete visualization specifcation and (2) separately 
defning responsive transformations. The frst approach uses con-
ditional keywords (e.g., media_rule in ZingChart [44]) to express 
transformations. For example, in Figure 4a, the media_rule key-
words for the x (line 5–7) and y (line 10–12) encodings describe the 

(a) Decorating a specification 
     with conditional statements 

(b) Declaring transformation
     separately

{ ...
  encoding: {
    x: {
      field: “category”, 
      media_rule: {
        channel: y
      }},
    y: { 
      field: “amount”,
      media_rule: {
        channel: x
      },
      axis: {
        labelFormat: “$,d” 
        media_rule: {
          labelFormat: “,d”
      }},
    size: { ...
      legend: {
        labelFormat: “$,d” 
        media_rule: {
          labelFormat: “,d”
      }}}  ... }

1
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{ specifier: { 
    role: “encoding”,
    channel: [“x”, “y”] }, 
  action: “swap” }

{ specifier: { 
    role: “text”,
    format: “$,d” }, 
  action: “modify”,
  option: {
    format: “,d” }}

Unclear where 
to declare this

Across different
elements

Enhance
reusability

1
2
3
4
5
6

Figure 4: Two possible approaches to specifying responsive 
transformations. (a) Decorating a specifcation with condi-
tional statements. (b) Separately defning responsive trans-
formations. 

changes for each encoding when viewed in a media format (e.g., a 
‘swap’ action). The media_rule keywords for the y axis (line 15– 
17) and the size legend (line 21–22) describe the same change to 
the label format for both types of elements. For the same set of 
transformations, the second approach in Figure 4b directly declares 
that the two position channels should be swapped and concisely 
describes changes to the label format for all text elements. While 
we choose to use the JSON format, other formats could be used to 
extend our approach; for example, Altair [36] is a Python wrapper 
for Vega-Lite [33] that leverages object-method chains rather than 
Vega-Lite’s JSON format. 

While the frst approach simplifes the learning process by ex-
tending an existing grammar, it can sometimes be tedious and 
unclear how to specify responsive transformations that apply to 
multiple elements. In particular, this approach often requires a sin-
gle responsive change (e.g., transposing an axis) to be interleaved 
across multiple parts of the specifcation (Figure 4a, Line 5–7 and 
10–12). In contrast, the second approach can enhance the reusability 
(D3: reusable) of a transformation specifcation by separating the 
desired responsive changes from the original visualization design. 
Furthermore, this approach can support more generalizable trans-
formations that are independent of the original visualization struc-
ture (D2: fexible; e.g., changing all text formats directly). Therefore, 
in this work we opt for the second approach. 

4 RESPONSIVE VISUALIZATION GRAMMAR 
We introduce Cicero, a declarative grammar designed to concisely 
express responsive transformations. Paired with a declarative speci-
fcation for a source visualization, Cicero provides a concise syntax 
for describing responsive changes independent of the structure of 
the original visualization specifcation. A single Cicero specifcation 
defnes how to transform an initial visualization design to a new 
design, thereby encoding the responsive transformations required 
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to convert a visualization into a responsive version for a partic-
ular format. A Cicero specifcation consists of a metadata object 
(metadata, line 2–4 of Figure 5a) and a list of transformation rules 
(transformations, line 5–78 of Figure 5a). The metadata object 
contains meta-information about the context for the target view 
(i.e., the intended environment, including information like the me-
dia type and screen size). The responsive strategies are encoded as 
separate rules in the list of transformations. We use a ‘list’ struc-
ture to enhance the reusability of the grammar by ensuring that 
each rule modularly describes a single responsive change to the 
source view (D3: reusable). The formal specifcation of the Cicero 
grammar is shown in Figure 6 and the Supplemental Material. 

The core components of a rule object include the specifier 
(which elements to change), an action (how to change the ele-
ments), and the option (what properties to change). The specifier 
queries the source visualization to identify the set of existing vi-
sualization elements to be transformed, and supports fexibly ref-
erencing visualization elements with varying levels of scope (D2: 
fexible). Then, the action and option provide high-level direc-
tion and detailed information about the change to be made to the 
selected elements, respectively, together encoding a wide range of 
transformations to elements selected by the specifier (D1: expres-
sive). For example, the rule object in line 6–9 of Figure 5a states that 
the compiler should ‘modify’ (action) the ‘mark’ (specifier)’s 
‘color’ to be ‘red’ (option). 

In Section 6, we provide a complete walk-through of the “Bond 
Yields” example; twelve additional examples are available in the 
Supplemental Material. We chose properties and values for the 
specifier, action, and option in a principled fashion based on 
these example use cases (Section 6) and prior work [13, 16]. As a 
Cicero specifcation is independent of the structure of the source 
visualization, Cicero’s properties and values can be extended in the 
future as needed. 

4.1 Specifer: Selecting elements to transform 
A specifier indicates which elements to transform on the target 
visualization. A specifier should only express existing element(s) 
from the target view, which the compiler then uses to identify the 
corresponding element(s) and extract relevant properties. Authors 
tend to apply responsive transformations to groups of element(s) 
sharing the same role, such as axis labels, mark tooltips, or legend 
marks, as characterized in prior work [13, 16]. In addition, authors 
may want to include transformations specifc to some data features 
(e.g., mark labels for specifc data points, the axis corresponding 
to a particular data feld) and/or the visual attributes of the visual-
ization element(s) (e.g., red-colored bars). To express visualization 
elements using diferent characteristics, one can declare a specifer 
by structure, data, and attribute queries. 
Structure query: Many declarative visualization grammars like 
ggplot2 [37], Vega [34], and ZingChart [44] defne roles for visu-
alization elements (e.g., marks, axes). Structure queries identify 
elements based on this role, and provide additional fexibility for se-
lecting and grouping elements in diferent ways, regardless of how 
the original visualization specifcation defne them (D2: fexible). 
Keywords for structure queries include role, mark, index, and id. 

The role keyword specifes the role of a visualization element 
(see Figure 5b). The role can be cascaded to specify subordinate 
elements like "mark.label" for labels associated with the visu-
alization marks or "legend.mark" for legend marks. For brevity, 
cascaded role keywords can be shortened when its parent role is un-
ambiguous (e.g., "layer.mark" as "mark"; "view.row" as "row", 
possible short forms are indicated as gray-colored and parenthe-
sized in Figure 5b). The mark keyword specifes the type of mark, 
which is useful when there are multiple mark types in a visualiza-
tion. One can include the index keyword to indicate the specifc 
element to select from a group of related elements (e.g., {role: 
"title", index: 1} selects the second title element). To indi-
cate the frst and last element, one can use "first" or "last" for 
the index value. Using "even" and "odd" can express every other 
(even and odd) element, respectively. The id keyword selects infor-
mational marks (emphasis) by their defned names or identifers 
(e.g., line 43 in Figure 5). 
Data query: A data query can reference a subset of data (data), 
a data feld (field), the type of a variable (datatype), and val-
ues for elements (values) to support varying level of customiza-
tion in selecting visualization elements (D1: expressive). For exam-
ple, the specifer {role: "mark", data: {price: 30}} selects 
all marks that encode a price value of 30. Likewise, the spec-
ifer {role: "axis", field: "price"} expresses axes for the 
price feld; {role: "legend", datatype: "nominal"} selects 
legends for nominal data variables. The values keyword expresses 
a subset of values for a reference element that is tied to a certain 
data feld like axis and legend . For instance, the specifer {role: 
"axis.label", values: [30, 50]} indicates the labels of an 
axis that encode value of 30 or 50. Similar to the index keyword 
for a structural query, one can use "even" and "odd" to specify 
every other (even and odd) value element. In order to support more 
complex data queries, we also provide a set of logical (NOT, AND, 
OR), arithmetic (=, ,, ≤, ≥, ≤, ≥), and string operations (regex pat-
tern, startsWith, includes, endsWith) that can be composed to 
further select and flter elements based on properties of the data 
(D2: fexible). 
Attribute query: An attribute query references visualization el-
ements based on their properties or attributes. The primary at-
tribute query keywords for identifying properties of visualization el-
ements are: channel, operation, and interaction. The channel 
keyword indicates whether the element has a certain encoding 
channel. For instance, the specifers {role: "layer", channel: 
"color"} and {role: "legend", channel: "color"} indicate 
layers and legends with a color encoding channel, respectively. 
The operation keyword captures the type of data transformation 
operations applied to the elements (e.g., flter, aggregate), and the 
interaction keyword expresses the type of interaction features 
(e.g., zoom, interactive flter). Cicero also supports the use of style 
and position attribute keywords such as color, font size, orient, rel-
ative positions etc. (see $OtherAttributes in Figure 6). For marks, 
those style attributes can be used to indicate mark properties (e.g., 
static color value or color encoding channel). For example, {role: 
"mark", color: "red"} indicates red-colored marks. 
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(a) Cicero specification overview

(c) Example transformations

(c) Example transformations (continued)

(b) Cicero role expressions

{ name: “exampleSpec”, 
  metadata: {
    condition: “small”,
    aspectRatio: “portrait” },
  transformations: [
    { specifier: { role: “mark” },
      action: “modify”,
      option: {
        color: { value: “red” }}},
    ... // more rules
  ]}

data
(data.)transform
view
(view.)row
(view.)column
(view.)facet
(view.)axis
(view.)hAxis
(view.)vAxis
[axis].grid
[axis].domain
[axis].tick
[axis].label
[axis].title

(view.)layer
(view.)layer.transform
(view.layer.)mark
(view.layer.)mark.label
(view.layer.mark.)tooltip
(view.layer.)legend
(view.layer.)legend.title
(view.layer.)legend.label
(view.layer.)legend.mark

(view.)title
(view.)annotation
(view.)emphasis

data sets
transformations on raw data (e.g., filtering)
view/layout
the row elements of a view
the column elements of a view
the facets of a multiple-view chart
the axes of a view
the horizontal axes of a view
the vertical axes of a view
the grid lines of axes
the domain lines of axes
the tick lines of axes
the labels of axes
the titles of axes

[axis] = (view.)axis/hAxis/vAxis
the layers of a view
transformations on data for layers
the marks of layers
the text labels attached to marks
the tooltips attached to marks
the legends of layers
the titles of legends
the labels of legends
the marks of legends

the title of a view
the non-data text annotations
the non-data informational marks

1
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78

{ comment: “modify axis labels’ color to blue
  and axis domains’ color to red”,
  specifier: { role: “axis” },
  action: “modify”,
  option: {
    label: { color: { value: “blue” },
    domain: { color: { value: “red” }}}}

{ comment: “modify mark labels’ color to blue”,
  specifier: { role: “mark” },
  action: “modify”,
  option: {
    role: “label”,
    color: { value: “blue” }}}

1
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a rule describing “modify 
the color of the marks to red”
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{ comment: “externalize annotations”,
  specifier: {
    role: “annotation” },
  action: “reposition”,
  option: { external: true }}

{ comment: “transpose axes”,
  specifier: { role: “view” },
  action: “transpose” }}

{ comment: “transpose axes (equivalent)”,
  specifier: { role: “layer” },
  action: “swap”,
  option: {
    channel: [“x”, “y”]}}

{ comment: “serialize label-marks”,
  specifier: { role: “mark.label” },
  action: “transpose”,
  option: { serial: true }}

{ comment: “add values of 50 and 60 to axis”,
  specifier: { role: “axis” },
  action: “add”,
  option: { values: [50, 60] }}

{ comment: “duplicate an arrow mark (non-data)”,
  specifier: { 
    role: “emphasis”, 
    id: “arrow” },
  action: “duplicate”,
  option: { x: 50, y: 15 }}

{ comment: “remove marks with a color channel”,
  specifier: { 
    role: “mark”, 
    channel: “color” },
  action: “remove” }

{ comment: “remove the color channel of marks”,
  specifier: { 
    role: “mark” },
  action: “remove”,
  option: { 
    channel: “color” }}

{ comment: “convert color channel to size channel”,
  specifier: { 
    role: “mark” },
  action: “replace”,
  option: { 
    channel: { from: “color” , to: “size”}}}

{ comment: “replace axis label with color legend”,
  specifier: { 
    role: “axis.label”, field: “plan” },
  action: “replace”,
  option: { 
    to: { 
      role: “legend”, 
      channel: “color” }}}

{ comment: “exchange color and size channels”,
  specifier: { role: “mark” },
  action: “swap”,
  option: {
    channel: [“color”, “size”]}}
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Figure 5: Examples and roles in the Cicero grammar. (a) An overview of a Cicero specifcation with a rule describing “modify 
the color of the marks to red”. (b) role expressions used in Cicero. (c) Example transformations referred to in Section 4. 
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CiceroSpec := Name?, Metadata?, Transformations

Name := <String>

Metadata := Condition?, MediaType?, AspectRatio?, …?
Condition := xsmall | small | medium | large | xlarge | …
MediaType := screen | paper | …
AspectRatio := portrait | landscape | <Number> | …

Transformations := <Rule>[]
Rule := Specifier, Action, Option?

Specifier := Role, Mark?, Index?, Id?, 
    Data?, Field?, Values?, Datatype?, 
    Channel?, Operation?, Interaction?,
    $OtherAttributes?*

Action := modify | reposition | transpose | add 
    | duplicate | remove | replace | swap

Option := Specifier° | To?, From?
To := Specifier° 
From := Specifier°

Notation
“a := b, c”: a is defined as a tuple of b and c, “a?”: a is an optional argument, “…”: extensible arguments, “<Abc>”: data type,
“a ~ b, c”: possible names for a are b and c, “a|b|c”: either one of a, b, or c, “<A, B>[]”: a list of a tuple oft A and B, 
“{}”: key-value map (e.g., JavaScript Object, Python Dict), “<Number>”: either a number or a string of a number with its unit (e.g., 350, “350px”).

Note
*$OtherAttributes include encoding channels, role values, and other appearance-related properties (e.g., font styles, stroke styles, etc.). 
°An option and its to and from properties share the same structure as a specifier but with different semantics (see Section 4.2). 
‡Possible role names are listed in Figure 5b.

Role‡ := view | layout | layer | mark | …
Mark := point | circle | rect | bar | line | …
Index := <Number> | first | last | even | odd
Id := <String>

Data := Datum | <Datum>[]
Datum := { <Field>: (<Any> | <Any>[] | <Op>[]) } 
Op:= { <Operator>: <Any> }
Operator := not | and | or | == | > | >= | startsWith | …
Field := <String> Values := <Any>[]
Datatype := nominal | ordinal | quantitative | temporal | …

Channel := x | y | color | size | arc | …
Operation := OperationType | <OperationType>[]
OperationType := filter | aggregate | bin | …
Interaction := InteractionType | <InteractionType>[]
InteractionType := zoom | context | …

$OtherAttributes ~ position, x, y, color, label, title, bin, 
    aggregate, scale, fontSize, strokeWidth, …
$OtherAttributes := <Any> | By | Prod
By := <Number> Addition to an existing value   
Prod := <Number> Product with an existing value

Structure query
Data tquery

Attribute query

Figure 6: The formal specifcation of Cicero. The Supplemental Material provides more detailed description. 

4.2 Action & Option: Applying transformations 
The action indicates how to change the elements queried by a 
specifer. We designed Cicero to provide a concise set of action 
predicates that can encode a large range of transformations (D1: 
expressive). The actions currently supported by Cicero are: modify, 
reposition, transpose, add, duplicate, remove, replace, and 
swap, chosen based on prior work [13, 16]. Our aim was to support 
a minimal set of action predicates from the prior work [13, 16]. 
For example, reposition actions in Kim et al. [16] can be efciently 
expressed with using a single ‘reposition’ action and various option 
properties (e.g., externalize → reposition + external: true 
and fix → reposition + fix: true). The ‘modify’ action can also 
express these changes to positions, yet having a single ‘reposition’ 
keyword is likely simpler for authors to remember. This smaller 
set of action predicates does not sacrifce much expressiveness, as 
shown in our diverse set of examples in Figure 5, Section 6, and the 
Supplemental Material. 

The option object in a rule further details the change indicated 
by the action. While the core structure of an option object is 
the same as a specifer, the structure and keywords vary based 
on the type of action. Keywords used in an option object refer 
to the properties or subordinate elements of the elements that 
were identifed by the specifier (e.g., axis labels are subordinate 
elements of an axis), so a compiler should interpret an option 
object with regard to the specifier. 

For example, one can use the role keyword to specify subordi-
nate elements in an option object. An option {role: "label"} 

means legend labels if the specifer is {role: "legend"} or mark 
labels if the specifer is {role: "mark"}. When an option does not 
include the role keyword, then the properties in the option indi-
cate those of the element identifed by the specifier. For example, 
in line 8–9 of Figure 5a, "color" refers to the color of the "mark" 
(the specifier in line 6), while the color keyword in line 13 of 
Figure 5c expresses the color property of the marks’ (specifier) 
labels (option). Finally, when role values are used as a keyword in 
the option, they indicate the subordinate elements of the element 
specifed by the specifier. For instance, in Figure 5c, line 5–6 
mean the color of the axes’ (specifier) labels and domain lines 
(option), respectively. The entire transformation rule (line 1–6) 
states that the compiler should specify all the axes in the chart, and 
modify the labels’ color to be blue and the domains’ to be red. 
A modify action changes the properties of an element to spe-
cifc values, with an associated option object for expressing at-
tributes of the elements selected by the specifier. For instance, 
one can modify the color of mark labels using the rule in line 
8–13 of Figure 5. To make relative changes, including adding 
or multiplying an attribute value by some value, one can use 
by and prod operators, respectively. For instance, a user can ex-
press modifying the size of the specifed marks by subtracting 30 
using the by operator: {specifier: {role: "mark"}, action: 
"modify", option: {size: {by: -30}}}. 
A reposition action is a special type of the modify action de-
signed to more intuitively support common transformations re-
lated to position properties like absolute positions (x, y), relative 
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positions (dx, dy), externalization (external, internal), etc. For 
example, externalizing text annotations can be expressed as line 
14–18 in Figure 5c. If a user wants to change the style and position 
properties together, then a modify action is recommended. 
A transpose action expresses the relative position of a pair of 
elements, the relationship of which is defned a priori, like two 
positional axes (x and y), labels associated with an axis or marks. 
A transpose action helps simplify expressions for relational prop-
erties. For example, the rule in line 20–22 (Figure 5) transposes the 
entire channel. The equivalent is to swap the x and y position chan-
nels in layers, as in line 24–28. To serialize labels to their marks, 
one can use the rule in line 30–33 with a serial keyword in the 
option. This behavior is the same as adjusting the label positions 
(relative x and y values) and mark ofsets. 
An add action adds new elements in a visualization. Since the 
specifier only expresses existing elements (Section 4.1), the newly 
added elements are provided in an option object. For example, to 
express “add values of 50 and 60 to axis”, one can use the rule 
in line 35–38 in Figure 5c. When the existing axis selected by the 
specifier (line 36) has ticks and labels for each axis value, then 
the rule should result in adding ticks and labels for those values 
specifed in the option (line 38). 
A duplicate action copies the element identifed by the specifier. 
If provided, an option indicates the properties for the duplicated 
element to change after duplication (e.g., repositioning the dupli-
cated element in line 40–45 of Figure 5c). In this case, the option 
acts as a shortcut for a second modify transformation to update 
the newly added element. 
A remove action removes elements identifed by the specifier 
when no option is provided; when included, the option specifes 
the properties or subordinate elements that should be removed 
from the elements identifed by the specifier. For instance, line 
47–51 of Figure 5c removes all marks that include a color channel 
(no option is provided); to instead remove the color channel of 
these marks requires an option to be expressed (line 53–58). 
A replace action expresses changes to the function of an entity 
while retaining its attributes. Sometimes, a visualization author 
may wish to change the role of an element such as changing from 
axis labels to legends (Figure 3) or changing an encoding channel of 
the marks to use increased screen space efciently. There are two 
types of replace actions: replacing a property with another within 
an element and replacing the role of an element with another. For 
the frst case, users can use the from and to keyword to indicate 
the original property and the replacing property. For instance, con-
verting a channel from color to size can be expressed as the rule 
in line 60–65 (Figure 5c). Second, authors often change the role 
of elements across the visualization structure, which requires an 
option to not be subordinate to the specifer. In that case, users 
can use a to keyword to indicate that this rule is changing the 
structural property. For instance, one can replace an axis for the 
feld plan with a legend for the color channel (which is meaningful 
only when the color channel encodes the same feld) by having a 
rule shown in line 67–74. 

{ specifier: { role: “view” },
  action: “replace”,
  option: { 
    from: { 
      role: “column”, 
      index: 0 },
    to: { 
      role: “row”, 
      index: 1 }}},
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Figure 7: An example Cicero rule describing partial trans-
pose. The bars are grouped by columns in the left view (be-
fore) and by rows in the right view (after). The entire set of 
transformations for this case (Aid Budget) can be found in 
the Supplemental Material. 

A swap action exchanges two entities (roles and encoding channels) 
while retaining their properties, which shortens two replace actions 
and helps avoid potential conficts. While a swap action has the same 
option structure with a replace action, it can also use an array 
to indicate properties to be swapped. For instance, to exchange 
the color and size channels, one can have a swap action and an 
array-based option as shown in line 77–81 (Figure 5c). 

4.3 Reusability of Cicero Expressions 
Responsive transformation strategies difer in how well they gener-
alize across visualizations. Sets of public-facing Web visualizations 
often appear together in a data-driven article and may share data 
sets, chart types, and style schemes, thereby facilitating transfor-
mation reuse. For example, the data fltering rule in line 5–10 of 
Figure 13 can be reused for other charts sharing the same data 
set because it references the data felds (year, forecasted_year) 
directly. However, this rule cannot necessarily be reused on charts 
with diferent data sets. On the other hand, authors can reuse the 
partial axes transpose rule in Figure 7 for charts with a similar 
format regardless of the underlying data set as the transformation 
is declared independently. The fexible specifer syntax of Cicero 
is designed to allow authors to express more reusable transfor-
mations. For instance, the transformation for adding axis values 
in line 35–38 of Figure 5c can be reused on neighboring charts 
to provide better consistency. Alternatively, one can express the 
same rule as {specifier: {role: "vAxis"}, action: "add", 
option: {index: "odd"}} to make the rule more generalizable by 
not making direct reference to the underlying data scheme. Expres-
sion reusability is a core attribute of Cicero that naturally supports 
sophisticated visualization authoring tools, such as recommender 
systems, which we discuss further in Section 7. 

5 PRINCIPLES FOR OUR CICERO COMPILER 
To demonstrate the feasibility of Cicero and our proposed approach, 
we developed a compiler for our extended implementation of Vega-
Lite. In the process, we identifed ten principles we considered when 
implementing our Cicero compiler. As outlined in Figure 8,our pro-
totype Cicero compiler takes as input a Cicero specifcation and a 
visualization design specifcation written in our extended Vega-Lite. 
Then, the Cicero compiler returns a transformed design specifca-
tion in our extended Vega-Lite, which is eventually rendered by the 
compiler of our extended Vega-Lite. For each transformation rule, 
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Figure 8: The pipeline for our Cicero compiler, developed for 
our extended version of Vega-Lite. 

our compiler frst selects an element(s) indicated by the specifier. 
If the element(s) exists, then the compiler applies the changes spec-
ifed by the action and option. While developing the prototype 
compiler and deriving the principles below, we examined exam-
ples from prior work [13, 16] and considered how our compiler 
should deal with downstream efects to associated elements, the 
default behavior of a rendering grammar, and conficting transfor-
mation rules. Future work can leverage our principles as useful 
semantics of the Cicero grammar when implementing custom Ci-
cero compilers for other declarative visualization grammars. We 
describe our custom Cicero compiler API in the Supplemental Ma-
terial (https://osf.io/eg4xq). 
Our extended version of Vega-Lite provides a set of 
workarounds for public-facing visualization technique, such as 
text-wrapping and supplemental text (captions), that are currently 
not supported in Vega-Lite [33], but were needed for our examples 
(e.g., external annotations). We use this extension to demonstrate 
the capabilities of Cicero for real-world use cases. The key difer-
ences from the current Vega-Lite are that our extension (1) uses 
trellis plot-based layouts [3] (rows and columns) instead of x and y 
encodings, (2) has many shortcuts to design techniques (e.g., wrap-
ping text, map visualizations, interactive flters) for which Vega-Lite 
currently requires further specifcations, and (3) supports richer 
communicative functionalities such as defning supplemental text 
elements like multiple subtitles or captions, creating graphical em-
phases that are not bound to data, allowing diferent formats of 
labels in the same axis, and so forth. The formal specifcation and 
description of our extended Vega-Lite are in the Supplemental Ma-
terial. 

5.1 Associated elements 
Visualization elements can have associations between them, which 
should inform how our Cicero compiler selects and handles the 
elements. For example, axis labels are dependent on the range of 
visualized data encoded by the x and y positions; hence, axis labels 
are associated with the ranges of visualized data values (line 15–21 
of Figure 13). When a subset of data is omitted under a responsive 
transformation, then text annotations attached to the corresponding 
marks should be omitted as well (line 5–10 of Figure 13). 

We describe two principles involving associated elements. First, 
our Cicero compiler detects associated elements depending on 
how a user has defned the original design (P1). In the previ-
ous example (Figure 13), the two longer labels are declared as text 
elements of the line marks (i.e., tied to the marks in the same layer; 
{type: "on-mark", field: "forecasted_year", items: 
[...], ...}). Thus, fltering out a subset of data subsequently 
removes the corresponding marks and their associated labels. On 
the other hand, if the user has declared the text elements directly 
(without anchoring to certain data points), then the compiler 

{ specifier: { 
    role: “view” },
  action: “replace”,
  option: { 
    from: { role: “column”, 
            index: 0 },
    to: { role: “row”, 
          index: 1 }}},
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{ specifier: { role: “row”, field: “plan” },
  action: “modify”,
  option: { 
    sort: { 
      sortBy: [“Already passed”, 
               “Republican plan”,
               “Democratic plan”] }}},
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Figure 9: An example case (Aid Budget) for a downstream 
efect to the layout of elements (moving a column axis to a 
row axis; line 1–8) and applying a rule (reordering a nominal 
y axis) to the previously transformed view (line 9–15). 

should interpret them as independent elements that are not 
subordinate to any other element(s) or data. 

Second, a transformation afecting the layout of a series of 
elements, such as adding, removing, or repositioning, has a down-
stream efect on the layout of their associated elements (P2), 
but not the static style. We do not allow downstream changes to 
style because the layout of one element and the static style of 
another are not meaningfully related whereas the relative layout 
between diferent elements does have a meaningful relationship. 
In the previous example, fltering out data points should not im-
pact any independent, non-data annotations but should remove 
any associated text element(s). Similarly, converting a feld from 
the column to the row of the chart (partial transpose) should move 
the axis labels (defned as {type: "on-axis", field: "plan", 
items: [...], ...}; i.e., tied to the axis of the plan feld) for the 
feld accordingly (see line 1–8 in Figure 9), but should not have side 
efects to their other properties—like the font weight or font size. 

5.2 Default behaviors 
Declarative grammars often have default behaviors to make it eas-
ier to create a visualization. For example, Vega-Lite automatically 
generates legends and axis labels as a user declares color/size and 
position encoding channels. In compiling a Cicero specifcation, we 
were able to relatively easily reason about default behaviors regard-
ing removing, modifying, and externalizing actions (e.g., “modify 
only what is specifed” as a general software quality guideline or 
“externalize annotations at the bottom of the chart unless speci-
fed otherwise” based on our examples). However, adding a new 
element and internalizing an element can complicate the compile 
process, particularly when a user has underspecifed the behavior. 
For example, when a user adds a new text annotation in the chart 
without specifying its position, then it is unclear how our Cicero 
compiler should behave. To guide such complex situations, we used 
a set of high-level default behaviors for our Cicero compiler. 

First, when adding a new element to a series of elements, 
its appearance should mimic the existing elements in the 
series (P3). For example, line 7–9 in Figure 10 adds new values 
for a vertical axis, resulting in newly added grid lines and labels. 
Then, they should look similar to the existing grid lines and labels 

https://osf.io/eg4xq
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{ specifier: { role: “title” },
  action: “replace”,
  option: { 
   to: { role: “annotation”,
         internal: true },
   separate: false }},

{ specifier: { role: “vAxis” },
  action: “add”,
  option: { values: [50, 150, 250] }},
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Changed

Mimic

Adding two labels
with different types
to the horizontal axis

Source

Target

Figure 10: An example use case (Disaster Cost) for our Ci-
cero compiler’s default behavior for replacing the title as 
an internal annotation (line 1–6) and for introducing newly 
added elements (axis labels and grid lines; line 7–9). 

without further specifying their appearance. Our Cicero compiler 
performs this addition by including those values in line 9 to the axis 
label and grid component in the specifcation (i.e., {..., values: 
[100, 200, 300], ...} → {..., values: [50, 100, 150, 
200, 250, 300], ...}). 

Second, our Cicero compiler considers the appearance of ele-
ments in a similar role for new elements that are not part of 
an existing series of elements (P4). For example, when adding 
labels to a y axis that has no existing labels, although they are not 
in the same series, it is more sensible to set their appearance similar 
to the labels on the x axis rather than the default presets of the ren-
dering grammar. The similarity of the role between two series can 
be determined by whether they can be specifed as the same role 
keyword (e.g., {role: "axis.label"} can specify both {role: 
"hAxis.label"} and {role: "vAxis.label"} if they both exist). 
Then, our compiler reuses the appearance attributes of the similar 
series of elements. 

Third, when there are multiple series of existing elements, 
our Cicero compiler selects the one with the most similar 
structure (P5). As shown in Figure 11, for instance, when adding 
a new label to an axis that has two groups of existing labels in 
diferent styles, our Cicero compiler reasons about which of the 
two groups is most similar to the new label. We use the number of 
subelements (e.g., text segments) and the format of elements to fnd 
the most similar series of elements. For our approach, the compiler 
frst identifes the number of newly added text segments (two). The 
one starting with “Jan. 19 ...” has two segments with diferent styles, 
and the “Feb. 29” one has a single segment. Then, by comparing 
the numbers of segments, the compiler matches the two-segment 
one (“Jan. 19 ...”) with the new labels. 

Lastly, we consider the case where the position and style of a 
newly added or repositioned element cannot be fully determined 
because there is no existing series with a similar role. In this case, 
the compiler should leverage the following default behavior if not 
specifed otherwise: as an overarching principle, use the default 
options of the rendering grammar’s compiler (P6) for newly 
added elements because users are expected to have some basic 
knowledge about how the rendering grammar behaves. For example, 
our extended Vega-Lite implementation does not automatically 
generate a legend for a new color scale, so our Cicero compiler for 
this extension similarly does not introduce a legend when adding 
a new color encoding. On the other hand, Vega-Lite’s default is to 
include a legend, so a Cicero compiler for Vega-Lite should add a 

Figure 11: An example use case (Covid Spending 1) for our 
Cicero compiler’s treatment of multiple series of existing el-
ements. In this case, our Cicero compiler adds new axis la-
bels by mimicking the most similar type of the existing axis 
labels according to the number of subelements (text lines). 

legend. We had the following default behaviours for cases where 
the rendering grammar has no relevant default options based on 
our observations of common responsive design principles: 

• Place (new) externalized annotations below the chart (see a4 
in Figure 14). 

• Place (new) internalized data annotations (or mark labels) at 
the center or the bottom of the associated data mark (see c4 
in Figure 14). 

• Place (new) internalized non-data annotations at the center 
of the largest contiguous empty space in the chart (see line 
1–6 in Figure 10). 

5.3 Confict management 
Cicero’s list-based specifcation explicitly indicates the order of de-
clared transformation rules. However, there are some cases where 
the order of rules may impact how the Cicero compiler interprets 
a given specifcation. Our compiler solves conficts using the fol-
lowing methods, some of which are inspired by relevant CSS prin-
ciples [22] that similarly deal with managing conficts between 
ordered rule items. First, it may be confusing to select visualization 
element(s) in a specifier when other rules in the specifcation 
also transform the same element, which difers from general CSS 
use cases. For example, suppose there is a rule to transpose the x 
and y positions. This rule also results in swapping the horizontal 
and vertical axes as they are associated with the x and y position 
encoding channels. If a user wants to make some design changes 
in an axis that is the horizontal axis after transposing but is the 
vertical axis before transposing, defning a specifer for this rule 
might be confusing. A simple approach defaults to always specify-
ing what is in the original view specifcation or what will appear 
in the transformed view. However, the former may not be useful 
for cases like making further changes to a newly added element, 
and the latter might make it difcult to compose a specifcation by 
requiring users to imagine the outcome status. As an overarching 
principle, our compiler applies the current rule to a view that 
has been transformed by the previous rules (P7) (e.g., line 1–8 
and line 9–15 in Figure 9). This approach also implies that the com-
piler applies the last declared rule (P8) when there are two rules 
making changes to the same element for the same property, which 
is also a common practice with CSS specifcations. Our compiler 



Cicero: A Declarative Grammar for Responsive Visualization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

{ specifier: {
    role: “mark”,
    datum: { 
      cat: “Apparel” },
 action: “modify”,
 option: {
   color: {
     value: “red”}}}

1
2
3
4
5
6
7
8

(a) More specific
{ specifier: {
    role: “mark” }
 action: “modify”,
 option: {
   color: {
     value: “gray”}}}

1
2
3
4
5
6

(b) Less specific

Figure 12: Rules to change the color of marks (a) by specify-
ing the mark for the “Apparel” category and (b) by generally 
changing the color of all marks (independent of the data). 

handles this principle by updating the target view specifcation for 
each transformation rule. 

Next, our compiler assigns higher priority to a more specifc 
rule than a more generic rule for the same element (P9) (note: 
not the same specifer)1. Here, the more attributes a specifier has, 
the more specifc the rule is, inspired by CSS principles [23]. For 
example, suppose a user wants to change the color of a mark for 
the “Apparel” category (rule (a) in Figure 12) as well as changing 
the color of all bars (rule (b)). Here, the mark for “Apparel” is af-
fected by both rules. Therefore, we recommend that generic color 
changes to other bars should not be applied to the mark for the 
“Apparel” category (i.e., rule (a) has higher priority than (b)). If a 
user does not want to apply a specifc change (e.g., the custom color 
for the “Apparel” mark), then the user should omit the rule from the 
Cicero specifcation. Lastly, to enhance the degree of freedom in 
indicating the priority of rules, Cicero provides an important prop-
erty for the same specifer, inspired by the !important keyword in 
CSS [23]. Rules with the important property set to true have 
higher priorities than others (P10) (i.e., compiled at the end). 
For example, a rule that changes the color of every axis label with 
{important: true} overrides another following rule that recolors 
a specifc axis label2. We refer the reader to the Supplemental Mate-
rial for the full details on how our Cicero compiler for the extended 
version Vega-Lite exhibits these principles. 

6 REPRODUCING REAL-WORLD EXAMPLES 
To demonstrate the expressiveness, fexibility, and reusability of 
Cicero and illustrate the above principles of our Cicero compiler, 
we present an in-depth walk-through of a mobile-to-desktop exam-
ple (Bond Yields) using our extended version of Vega-Lite as the 
rendering grammar. We have twelve additional real-world inspired 
walk-through specifcations that show the responsive changes step-
by-step and two other detailed textual walk-throughs in the Sup-
plemental Material that exhibit a variety of other transformations 
to visualization elements (i.e., data, marks, axes, title, labels, anno-
tations, informational marks/emphasis, interaction, etc.) for both 
desktop-to-mobile and mobile-to-desktop transformations. The to-
tal of 13 example use cases includes three from Hofswell et al. [13], 
four cases from Kim et al. [16], three recent responsive visualiza-
tion cases (in our extended Vega-Lite), and two additional cases 

1See the ‘Justice Kennedy’ case (desktop to mobile) in our Supplemental Material. 
2See the ‘Disaster Cost’ case (desktop to mobile) in our Supplemental Material. 

TransformedCicero transformations
...
{ specifier: { role: “view” },
  action: “modify”,
  option: { size: [365, 450] }},

{ specifier: { 
    role: “data”,
    data: [
      year: { leq: 2011 },
      forecasted_year: { leq: 2011 }]
  action: “remove” },

1
2
3
4

5
6
7
8
9
10

Desktop Mobile

Axis change

{ specifier: { 
    role: “mark”,
    mark: “area” },
  action: “remove” },

{ specifier: { 
    role: “row”,
    field: “growth”, }
  action: “modify”,
  option: { 
    scale: { 
      domain: [3, 5] }}},

11
12
13
14

15
16
17
18
19
20
21

{ specifier: { 
    role: “mark.label”,
    mark: “line”,
    text: { 
      startsWith: “2016 forecast for” }},
  action: “reposition”,
  option: {
    dx: { by: -10 },
    dy: { by: -40 }}}
...

22
23
24
25
26
27
28
29
30
31

Figure 13: A walk-through example case of Bond Yields from 
a desktop version (top left) to a mobile version (top right). 
Starting with the desktop version, we frst resize the chart to 
ft to a mobile screen (line 2–4), remove a subset of data for 
earlier years (line 5–10), remove the area mark (line 11–14), 
update grid lines by rescaling the domain of the y position 
channel (line 15–21), and reposition the annotation (22–30). 

from the Vega-Lite example gallery that were not originally respon-
sive but demonstrate the generalizability of our Cicero specifca-
tions to refne complex source views (in Vega-Lite). All 13 cases 
are listed in Figure 1 and provided in the Supplemental Material 
(https://osf.io/eg4xq). 

6.1 A Walk-through Example: Bond Yields 
The Bond Yields example3 visualizes changes to both the actual and 
forecasted GDP growth rates over time. In the desktop version (Fig-
ure 13), the x position encodes the year from 2010 to 2021, and the 

3https://www.wsj.com/graphics/how-bond-yields-got-this-low/ 

https://osf.io/eg4xq
https://www.wsj.com/graphics/how-bond-yields-got-this-low/
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y position indicates the GDP growth rate from 3.0 to 5.5. The area 
mark and black line mark represent the actual GDP growth rate 
from 2010 to 2015. The red and gray lines represent the fve-year 
forecast of GDP growth rate for each year from 2010 to 2016; for ex-
ample, the leftmost red line shows the estimated GDP growth rates 
for 2011 to 2015, as forecast in 2010. Transformations to produce 
the mobile version include (1) reducing the chart size, (2) removing 
the data points and labels for the forecast year of 2010 and 2011, 
(3) omitting the area mark, (4) truncating the y axis, and (5) reposi-
tioning an annotation. The Cicero spec is shown in Figure 13a. 

First, to resize the chart for a mobile phone, one can apply a 
modify action to the entire view (line 2–4). The option object indi-
cates the size of 365 (width) × 450 (height) to ensure that the chart 
fts a mobile phone without requiring horizontal scrolling. Alter-
natively, one can use {width: 365, height: 450} in the option. 
Then, line 5–10 flters out (remove) the specifed data points to 
simplify the view by reducing the information density. The data 
keyword in the specifier means ⟨year ≤ 2011 (for the actual GDP 
growth rate) OR forecast year ≤ 2011 (for the forecast)⟩. Filtering 
out the data points removes (1) the two simple line marks for the 
forecast year of 2010 and 2011, (2) the data annotation for forecast 
year 2010, and (3) the corresponding parts of the area and black 
line mark for the actual GDP growth rates because each of these 
elements is associated with the fltered data (P2). This association 
is determined by the original visualization structure; if the annota-
tions were declared as non-data elements, then the annotation for 
the 2010 forecast would remain (P1). 

The remove transformation in line 11–14 omits the area mark 
specifed by the mark keyword. After fltering the earlier data, there 
is wasted space along the y-axis that unnecessarily compresses 
the data. To address this issue, the rule in line 15–21 changes the 
scale domain of the row feld (growth) to [3,5], resulting in the re-
moval of the axis label and grid line for 5.5; the remaining elements 
automatically adjust to fll the newly vacated space (P6). 

Lastly, the reposition rule in line 22–30 moves the mark label. 
Because there are many text elements associated with data marks 
(e.g., year names for each line), a specifc text query is needed to 
select the label to move. For this rule, one can use the startsWith 
operator (line 25–26) to select elements with text starting 
with the specifed string. Then, the option object changes the 
relative horizontal and vertical position (dx and dy, respectively) 
using the by operator which adds the specifed value to the origi-
nal value (i.e., moving the element by 10px left and by 40px upward). 

7 POTENTIAL APPLICATIONS FOR CICERO 
Declarative grammars are particularly valuable for their utility in 
applications like visualization recommenders and authoring tools. 
In particular, they can function as a common representation method 
for diferent intelligent tools with similar purposes [41]. Visualiza-
tion systems often use their own “internal representation” methods 
for their specifc purposes [41]. Suppose we have two recommender 
models for diferent parts of a visualization (e.g., one for chart types 
and the other for annotations and emphases) that use heteroge-
neous representation methods. If they are translated to Cicero, then 
their recommender outcomes could be efectively combined to a 

user-side application. In this section, we describe how we used 
Cicero to represent a design space of responsive transformations 
in a prototype design recommender for responsive visualization as 
a proof of concept. We further discuss how Cicero might support 
mixed-initiative authoring tools. 

7.1 Responsive Visualization Recommender 
As a case study for potential applications for Cicero, we developed 
a recommender prototype for responsive visualization transfor-
mations using Answer Set Programming (ASP), which represents 
knowledge in terms of facts, rules, and constraints [6]. Our rec-
ommender takes a source visualization specifcation expressed in 
our extended version of Vega-Lite along with confguration pref-
erences (e.g., intended screen size, strategies that a user wants to 
avoid, and a subset of data that can be omitted) which could hy-
pothetically be provided by a user. Our recommender is intended 
to provide a diverse set of recommendations rather than showing 
several “optimal” visualization with slight diferences. We encoded 
a set of common responsive visualization strategies motivated by 
prior work [13, 16] in ASP. Given the inputs and encoded strategies, 
Clingo [10], an ASP solver, generates a search space of responsive 
transformation strategy sets (corresponding to responsive visual-
ization designs). To rank these strategy sets, we encoded heuristic-
based costs that apply to individual strategies, and normalize and 
aggregate these costs to rank strategy sets representing design 
alternatives. We implemented three types of costs that apply to 
individual strategies: “popularity” costs based on the frequency of 
the strategy in prior analyses of professionally-designed responsive 
visualizations [13, 16]; density costs, where strategies that reduce 
information density are assigned lower cost than those that do not 
in a desktop-frst pipeline, and vice versa in a mobile-frst pipeline; 
and message preservation costs, where strategies (e.g., axis trans-
pose, disproportional rescaling) are assigned costs based on the 
extent to which prior work proposes that they afect the implied 
“message” of a visualization [16, 17]. 

In this pipeline, each recommended strategy set in the ASP for-
mat (e.g., do(transpose_axes).) are translated to a Cicero spec 
(e.g., {specifier: {role: "view"}, action: "transpose"}). 
While inference engines or models (e.g., ASP, ML, etc.) often employ 
their own abstract expressions for computational purposes, sys-
tems need to translate such abstract expressions (e.g., to JavaScript, 
Python, etc.) before utilizing them. For instance, ASP can efciently 
perform logic problems, but the ASP expressions cannot be directly 
used to execute actual tasks without translation. In the context 
of responsive transformation, directly using ASP codes to trans-
form a visualization design specifcation (i.e., running JavaScript 
codes for each ASP code) is likely to complicate the translation, 
lacking modularization. For example, whenever a recommender 
adds a new transformation strategy, the system has to look at every 
detail of diferent use cases, and doing so may not be consistent 
with the existing transformation strategies. This inconsistency in 
turn makes it more difcult to debug and extend the recommender. 
Instead, if we can translate those abstract transformations to sys-
tematic expressions like the Cicero grammar, then implementing 
recommenders for responsive visualization only needs to focus on 
generating a search space by modularizing the translation process. 
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(a) Resizing only (b) Removing data (c) Shortening 
     labels

(d) Externalizing + 
   numbering labels

Figure 14: Selected examples among top seven recommen-
dations for Bond Yields case from desktop to mobile. The 
original design is shown in Figure 13. 

This process is similar to how Draco translates ASP expressions to 
Vega-Lite [33] and then renders a visualization [28]. 

Below, we illustrate example recommendations (Figure 14a) us-
ing our walk-through example (Section 6). We provide further de-
tails on our prototype recommender implementation, and describe 
example recommendation cases below and in Supplemental Mate-
rial (https://osf.io/eg4xq). We emphasize, however, that our goal 
in developing the prototype recommender is to demonstrate the 
feasibility of using Cicero in such an approach, rather than to ar-
gue for the specifc implementation of the cost model we used. In 
other words, our recommender should be interpreted as a proof of 
concept of our approach, rather than as an ideal recommender. 

7.1.1 Example: Bond Yields. To generate candidate mobile views 
for the Bond Yields case, we include in the confguration the target 
size of a mobile view and a subset of data that can be omitted (refer-
ring to the original design). The frst recommendation (Figure 14a) 
is simply resized to the target size. For this change, our ASP recom-
mender returns do(set_width,365). and do(set_height,450)., 
and these abstract descriptions are translated to corresponding Ci-
cero rules: {specifier: {role: "view"}, action: "modify", 
option: {width: 365, height: 450}}. In the second recom-
mendation (b), the suggested omission is applied, similar to the 
original mobile view except for the remaining area mark and axis 
value for 5.5%. Our ASP engine expresses the transformation in an 
abstract way (do(add_filter,f0)., where f0 is a pointer to the 
user-suggested data flter statement), and then it is converted to 
a proper Cicero rule, {specifier: {role: "data", data: 
[...]}, action: "remove"}. The data annotations for 
the forecast years of 2010 and 2016 are shortened by re-
moving the frst line (the red text) in the third recommen-
dation (c). For this change, our recommender converts 
an ASP rule, do(remove_text_line,t2,0). where t2 is 
a pointer to the annotations (or mark labels), to a Ci-
cero rule: {specifier: {role: "mark.label", field: 
"forecasted_year", index: 2}, action: "remove", 
option: {items: {index: 0}}}. The fourth recommendation 
(d) externalizes the same data annotations below the chart with 
numbering for reference to the data marks. For this transformation, 
ASP rules, do(externalize,t2). and do(numbering,t2)., are 
translated to a Cicero rule: {specifier: {role: "mark.label", 

// A0&2: decrease X axis range
{ specifier: { role : “view” },
  action: “modify”, 
  option: { width: 375 }}

// A9: decrease font size
{ specifier: { role : “text” },
  action: “modify”, 
  option: { fontSize: { prod:  0.8 }}}

1
2
3
4
5
6
7
8
9

15px
12px

Figure 15: Expressing transformation strategies of Mobile-
VisFixer [40] in Cicero. Line 2–4: decreasing the range of the 
x axis by reducing the width of the chart. Line 7–9: decreas-
ing the font size using prod keyword. 

field: "forecasted_year", index: 2}, action: "modify", 
option: {external: true, number: true}}. If the ASP rules 
were not compiled into our modularized Cicero grammar, the 
required changes to the original visualization specifcation would 
need to directly dissect many diferent parts of the specifcation, 
such as data, annotations, and axes. By modularizing this computa-
tion, Cicero can provide a more systematic representation of those 
changes, which helps extend and debug our recommender. 

7.1.2 Generalizability for Recommenders.    Cicero can enhance mod-
ularization of responsive visualization tools by connecting tool-
specifc expressions and visualization grammars. For example, our 
recommender prototype uses ASP [6] to encode expressions with 
the Clingo solver [10]), and the Cicero compiler connects recom-
mendations expressed in ASP to visualizations in our extended 
Vega-Lite. Future work might start to leverage Cicero with machine 
learning-based recommenders. For instance, Cicero can express 
reusable transformation rules in MobileVisFixer [40] that trans-
lates non-responsively designed visualizations to mobile views. As 
shown in line 2–4 of Figure 15, Cicero expresses ‘reducing the range 
of x axis’ by expressing the change to the chart width (e.g., 375 
pixel for mobile screens). Using the prod keyword in line 9, one 
can express reducing the font size of all the text elements relatively. 
In the Supplemental Material, we provide a list of reusable Cicero 
expressions for MobileVisFixer [40] rules of which the meanings 
are clearly defned. 

7.2 Mixed-initiative Authoring Tools 
Users of visualization authoring tools may prefer diferent levels 
of customization and automation [25]. Tools like Microsoft Power 
BI [9], which automates design recommendations by converting a 
source visualizations using a set of default strategies, allow quick 
visualization creation, but can limit design expressiveness. In con-
trast, while the prototype proposed by Hofswell et al. [13] and 
DataWrapper [1] do not have automated recommendation features, 
they enable more customization in making responsive designs. 

Mixed-initiative authoring tools can provide a balance of au-
tomation and customization capabilities, by allowing authors the 
ability to make manual responsive transformations or accept recom-
mender-suggested transformations. Mixed-initiative authoring has 
been applied in exploratory data analysis (e.g., Voyager [38] and Dz-
iban [20]) and dashboard design (e.g., LADV [21]) settings. While 
our prototype recommender takes as input a representation of 
users’ preferences, a next-generation authoring tool might aim to 

https://osf.io/eg4xq
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reason about responsive transformations that the user makes so 
as to recommend further or alternative transformations. For exam-
ple, imagine creating the Bond Yields case (Section 6.1) without 
data fltering. After resizing, the target visualization might look 
dense (Figure 14a1) although it maintains more takeaways com-
pared to the actual design. Then, a user might decide to externalize 
the annotations instead of removing data. Following this manual 
change, a mixed-initiative authoring tool might suggest numbering 
the externalized annotations to support fnding data references. 

A mixed-initiative approach stands to reduce computational 
complexity by looking at the current state of edits rather than rea-
soning over a larger space of transformation combinations. Within 
a mixed-initiative authoring pipeline for responsive visualization, 
Cicero can be used to represent both system-recommended trans-
formation strategies and user-driven manual edits, which can make 
such systems easier and more efcient to handle diferent sources 
of transformations (system and user). In addition, when an author 
updates the source visualization, Cicero can be used to reapply 
previous rules that are generalized to the updated chart (i.e., rules 
with the specifers that can make queries from the updated chart). 

8 LIMITATIONS 
While Cicero and the Cicero compiler for our extended version 
of Vega-Lite can reproduce real-world use cases that represent a 
diverse set of transformations, future work should apply Cicero 
and future Cicero compilers to a bigger set of use cases to improve 
them and further extend the expressiveness of the grammar. For 
example, future work might focus on expressing complex user in-
teractions (e.g., pan+zoom for a 3D visualization) with specifiers, 
inspired by declarative grammars for interactive visualizations 
(e.g., trigger, signal, and event streams in Vega [14, 34]), to 
better facilitate the application of such technologies to Web con-
texts where they have largely been underutilized [13, 16]. Another 
interesting future direction could be expressions for bounded dy-
namic behavior—the sizes or arrangement of elements dynamically 
change up to a certain limit, such as max-width and flex-wrap in 
CSS—in options. As it is a Web browser that implements CSS spec-
ifcations, additional expressions for bounded dynamic behavior 
will be useful only if a rendering grammar supports such behav-
ior. Furthermore, new design and evaluation studies for intelligent 
responsive authoring tools with Cicero might be useful to extend 
both Cicero and prior approaches in responsive visualization tool-
ing [13, 16, 17, 19, 29, 40, 42, 44]. 

Next, to demonstrate the full potential of Cicero in Web-based 
communicative visualizations, we chose to implement an extended 
version of Vega-Lite that can more easily express common tech-
niques for narrative visualizations, such as externalizing annota-
tions and applying word wrap to text labels. These capabilities are 
not straightforward to implement in Vega-Lite [13], so the result-
ing capabilities of a Cicero compiler for Vega-Lite may likewise 
be limited in what can be expressed in rendered visualizations. As 
such grammars continue to develop, the corresponding compiler 
can be refned to support additional responsive functionalities. Fur-
thermore, future work might need to apply these techniques to a 

larger class of declarative systems, such as extensions based on gg-
plot2 [37] or Vega [34], to efciently implement the corresponding 
Cicero compilers with a better understanding of their capabilities. 

Finally, a Cicero specifcation defnes a set of transformations 
to create a single responsive version and itself is not intended for 
direct rendering. As multiple responsive versions are necessary for 
diferent device types, an authoring system could bundle multiple 
Cicero specifcations as a family using the metadata object in the 
specifcations to decide when to apply each of them. 

9 CONCLUSION 
We contribute Cicero, a declarative grammar for specifying re-
sponsive transformations from a source to a target visualization. 
By enabling fexible, expressive, and reusable specifcations of vi-
sualization transformations, Cicero paves the way for intelligent 
responsive visualization authoring tools, by providing a concise set 
of action predicates that enable encoding diverse transformations, 
fexible specifer syntax for handling the behavior of transforma-
tions, and reusability of transformation rules. To demonstrate the 
utility of Cicero in the context of intelligent visualization tools, we 
leverage Cicero for a prototype design recommender for respon-
sive transformations. Future work can employ Cicero for a range 
of responsive visualization authoring tools designed for specifc 
declarative grammars with custom compilers for those grammars. 
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