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ABSTRACT
PDF documents often contain rich data tables that offer op-

portunities for dynamic reuse in new interactive applications.

We describe a pipeline for extracting, analyzing, and parsing

PDF tables based on existing machine learning and rule-

based techniques. Implementing and deploying this pipeline

on a corpus of 447 documents with 1,171 tables results in only
11 tables that are correctly extracted and parsed. To improve

the results of automatic table analysis, we first present a tax-

onomy of errors that arise in the analysis pipeline and discuss

the implications of cascading errors on the user experience.

We then contribute a system with two sets of lightweight

interaction techniques (gesture and toolbar), for viewing and

repairing extraction errors in PDF tables on mobile devices.

In an evaluation with 17 users involving both a phone and a

tablet, participants effectively repaired common errors in 10

tables, with an average time of about 2 minutes per table.
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•Human-centered computing→Human computer in-
teraction (HCI); Touch screens; Gestural input; • Applied
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(a) The original PDF table.

(c) The process for fixing errors in the extracted table.

Total for South of Broad Section Closed to 
Traffic on Weekends

Sections Open to 
Traffic North of

Species Beach Drive
Raccoon
Squirrel Deer
…

8
7 4
…

Branch Road
5
3 1
…

and Holidays
3
3 0
…

Broad Branch
0
1 3
…

(1) Insert a cell to the left of "Total for"

Total for 
Beach Drive

South of Broad 
Branch Road

Section Closed to 
Traffic on Weekends 
and Holidays

Sections Open to 
Traffic North of 
Broad Branch

Raccoon
Squirrel Deer
…

8
7 4
…

5
3 1
…

3
3 0
…

0
1 3
…

Species

(2) Merge header rows into a single row

Total for 
Beach Drive

South of Broad 
Branch Road

Section Closed to 
Traffic on Weekends 
and Holidays

Sections Open to 
Traffic North of 
Broad Branch

Raccoon
Squirrel

…

8
7

…

5
3

…

3
3

…

0
1

…

Species

(3) Split merged rows based on newline positions

Deer 4 1 0 3

Total for South of Broad Section Closed to 
Traffic on Weekends

Sections Open to 
Traffic North of

Species Beach Drive

Percent of road length

Raccoon
Squirrel Deer
Water snake
Unidentified Bird
Red-eyed vireo Snapping
turtle Box turtle
Opossum Domestic cat
Total

Average annual road-
kill per mile

8
7 4
2
2

1 1 1

1 1
28 (100%)
100%

28/5.8 = 4.8

Branch Road
5
3 1
0
2

0 0 0

1 0
12 (43%)
13%

12/0.70 = 17.1

and Holidays
3
3 0
1
0

0 1 0

0 1
9 (32%)
46%

9/2.7 = 3.3

Broad Branch
0
1 3
1
0

1 0 1

0 0
7 (25%)
41%

7/2.4 = 2.9

(b) The extracted PDF table.

Figure 1: (a) PDF documents often contain rich data tables.
(b) However, techniques for extracting the data from static
PDF tables can be error prone (errors are shown in red); in
this example [27], the header has been split into multiple
rows and several rows of the table have been incorrectly
merged together (e.g., “Squirrel” and “Deer”). (c) To support
reuse of the table data, the readermust first repair the errors
by (1) inserting a new cell in the first row, (2) merging the
header rows, and (3) splitting the incorrectly merged rows.
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1 INTRODUCTION
Data tables are a rich source of information in PDF docu-

ments, but it is often difficult to digest or reuse such data.

Unlike tables in web pages where the elements are properly

tagged, tables in PDF documents are often represented as

vector or bitmap graphics with no structural and semantic

information. As a result, simple use cases such as extract-

ing data from tables to be used outside of the PDF reader

or indexing tables for search can involve tedious additional

work. The current static PDF format, originally designed

for printing or viewing on desktop monitors, is also not op-

timized for dynamic or mobile usage contexts. As mobile

devices become pervasive, reading large tables on a tablet or

a phone requires constant zooming and panning, while also

requiring the reader to situate the table within the context

of the document text. These cumbersome interactions break

the flow of reading and can be cognitively demanding.

To address these challenges, "next-generation PDF" aims

to introduce new flexibility to PDF documents through the

use of web technologies [2]. Such flexibility could lead to

new interactive applications to improve the reusability of

document data and enhance the way readers engage with

the document. In dynamic reading environments, the place-

ment of supplemental information (e.g., footnotes, figures, or

tables) can have a significant impact on the utility of this in-

formation [34]. Flexible PDF documents could support reflow

of the contents enabling them to adapt to the accessibility

needs of the user or the device form factor. Recent work

has also explored methods to automatically link text and

tables [20], approaches to generate contextual visualizations

from tables [3], and interactive techniques for highlighting

connections between text and visualization [21].

To enable interactive experiences for data tables requires

a system that can understand the structure and semantics of

tables. Automatic extraction enables generalized techniques

to augment documents regardless of the underlying creation

mechanism or document age. Unfortunately, achieving such

an understanding is not straightforward. Despite recent ad-

vances in machine learning approaches [4, 5, 8, 10], accurate

table detection and content extraction remain challenging.

This problem is exacerbated by poor table schema and lay-

out designs for the original document table. Consequently,

automated table analysis is often error-prone, which in turn

impacts downstream reuse of the table data.

We first review state-of-the-art techniques for automated

extraction and analysis of PDF tables in the form of a six-

stage pipeline: table detection, content extraction, type classi-

fication, structure analysis, data parsing, and finally interac-

tive reapplication. We implement and run this pipeline on a

corpus consisting of 447 labeled PDF documents. The results

show that only 11 of the original 1,171 tables were correctly

extracted, analyzed, and parsed. To better understand how

to improve this process, we contribute a taxonomy of errors

and complications that arise throughout the pipeline. We

discuss the sources and significance of these complications

and the impact of cascading errors on the analysis pipeline.

Based on our analysis, we argue that human input is nec-

essary in the analysis pipeline for dynamic reapplication

of PDF tables. We identify several errors from our taxon-

omy that can be interactively rectified on the smaller form

factor of a mobile device, and contribute two approaches

for lightweight table editing interactions. To evaluate these

approaches, we conduct a comparative study with 17 par-

ticipants and measure users’ performance in terms of the

time and number of actions required to complete the task.

We found that participants could quickly fix even complex

tables, with task times lasting about 2.22minutes on average

and only 3.85 minutes on average for the most challenging

task. Across all 10 tasks, participants fixed the errors in each

table using about 18.6 actions on average.

2 RELATEDWORK
This paper leverages prior work from several domains includ-

ing data table extraction and cleaning, research on mediating

the display and resolution of recognition and inference errors,

and work on gesture interaction interfaces and techniques.

2.1 Data Table Extraction and Cleaning
Processing data tables is a well studied area of related work,

spanning table detection, classification of table types, extrac-

tion of relational data, and data cleaning. Tabula [1] is a tool

that allows users to select tables for extraction from text-

based PDF documents. He et al. [16] has explored how to

automatically detect and extract tables from PDF documents.

DeepDive [25] is a system for constructing a knowledge-

base of facts from the web. Extensive prior work has focused

on classification of web tables and leverages the HTML for-

matting information in the classification [8, 10, 22]. These

techniques use the table contents and stylistic information to

build machine learning classifiers for the table types. Crestan

and Pantel [8] present a taxonomy of nine types of web tables,

whereas Eberius et al. [10] focus on first distinguishing data

from layout tables, and then classifying the table type. We

leverage many of these techniques in our analysis pipeline.

Chen and Cafarella explore techniques for automatically

detecting hierarchies in spreadsheet data using stylistic in-

formation and similarities amongst cells [4]; their system

Senbazuru [6] supports the process of extracting hierarchical

data and enabling user repair operations for fixing incorrect

hierarchies [5]. We are similarly interested in how users

can resolve system errors in a semi-automatic table analysis

pipeline; for our work, however, we examine a larger range

of errors that arise on automatically extracted PDF tables.



Data wrangling techniques are often necessary to clean

or restructure complex data. Wrangler [19] supports direct

manipulation of data tables to produce complex data trans-

formation scripts that can be reused across multiple tables;

such approaches have now been realized in recent commer-

cial systems [9, 30]. Our system is motivated by this work on

data cleaning, but places an emphasis on lightweight mobile

interactions rather than producing a fully robust system; our

goal is for readers to quickly reach a usable state rather than

to support the full range of data restructuring operations.

2.2 Mediating Recognition and Inference Errors
Errors or ambiguities often occur in complex systems. Prior

work has explored approaches for mediating recognition er-

rors for handwriting [28] and speech [15]. Mankoff et al. [24]

present OOPS: a general purpose toolkit for designing ambi-

guity resolution approaches for systems relying on accurate

input recognition (including speech and handwriting). Am-

biguities are a common complication in natural language

systems that can limit the effectiveness of the system. Data-

Tone [14] supports the resolution of ambiguities in a system

for generating visualizations from natural language input

via ambiguity widgets. We add to this body of work by first

considering the types of complications that arise in the table

analysis process and then designing lightweight table editing

operations to resolve some of these errors.

2.3 Interaction Interfaces for Mobile Data Analysis
For our table editing operations, we target lightweight modi-

fications to the table on the fly using mobile devices. Interac-

tive text editing has been extensively explored for mobile de-

vices [7, 13, 33]. However, tables can be particularly complex

and hard to navigate on mobile devices. Related work has

therefore explored the use of speech [29], gesture [17, 18, 23],

or handwriting [35] for editing tables on mobile devices. We

extend this work with a system for fixing common extraction

errors in table structures using both a toolbar and gestural

approach. There is also a large body of related work on the

design of gestural systems [31, 32] that can further inform

the design of our table editing interactions.

3 BACKGROUND
Structural properties of a table are essential for determining

how to properly extract the underlying data entities. In this

section, we provide relevant background on the types of

tables described in this work and their structural properties.

We leverage a table type taxonomy described by Crestan

and Pantel [8] to categorize our tables. In this taxonomy,

tables are defined as either data tables (e.g., tables with

structured, relational knowledge) or layout tables (e.g., ta-
bles used purely for formatting). Throughout the analysis

pipeline, we only focus on data tables and regularly remove

Location Species Roadkill Incidents

Rock Creek

Rock Creek

Wise Road

Wise Road

Grey Fox

Opossum

Opossum

Box Turtle

1

18

4

1

Location

Species

Roadkills

Rock Creek Rock Creek Wise Road Wise Road

Grey Fox Opossum Opossum Box Turtle

1 18 4 1

Location of Opossum Roadkills:

Rock Creek

Wise Road

18

4

(b) Vertical Listing

(c) Horizontal Listing (d) Attribute-Value

Rock Creek Wise Road

Total

   Grey Fox

   Opossum

   Box Turtle

19

1

18

5

4

1

(a) Matrix

Figure 2: An example (a) matrix, (b) vertical listing, (c) hor-
izontal listing, and (d) attribute-value table. The cells corre-
sponding to a single entity are highlighted in blue for each
table; the procedure for extracting elements varies depend-
ing on the table type and structure.

layout tables from our analysis. In the original taxonomy, the

data tables can be further subdivided as one of the follow-

ing types: vertical listing, horizontal listing, matrix, calendar,
attribute-value, enumeration, or form. For our analysis, we

reclassify forms as layout tables and introduce the type other
for data tables that are not clearly defined by another type.

The table type determines how data should be extracted

using an entity-attribute-value approach. Figure 2 shows

how the same data is represented in four types of tables. An

entity is a roadkill record (highlighted in blue), which has

three attributes (Location, Species, and Roadkill Incidents),

and the corresponding values. Notice that attribute names

are not included in a matrix. In the attribute-value table, the

entity and attribute names are only included in the title.

In addition to the table type, the table orientation, the

presence of hierarchies, and the rows or columns that repre-

sent headers and keys are all essential for understanding the

table structure. The table orientation describes the layout

direction of the entities and can be defined as either vertical,
horizontal, or not applicable. In Figure 2, both the vertical
listing and attribute-value tables have a vertical orientation,
whereas the horizontal listing has a horizontal orientation,

and the orientation of the matrix is not applicable.

Hierarchies can occur in the rows, columns, and/or data,
and reflect additional relationships amongst the entities that

are otherwise not explicitly defined; hierarchies may be de-

noted using strategies including indentation, cells that span

multiple rows or columns, or textual annotations (such as

“Total”), among others. Thematrix table in Figure 2a includes
a row hierarchy: the number of roadkill incidents for each

location is a subset of the “Total” included in the second row.

Headers define the labels for the values of an entity. For

example, in the vertical listing in Figure 2b, the header is the

first row and the labels are: “Location”, “Species”, and “Road-

kill Incidents”; for the horizontal listing, the headers appear
in the first column, whereas for the matrix and attribute-
value table, the headers are implicit. A key is an attribute



Figure 3: We labeled the type of all 1,171 data tables from
our PDF table corpus. The vastmajority of tables are vertical
listings, withmatrices being the second most common.

that uniquely identifies an entity. In some tables, multiple at-

tributes are required to uniquely identify an entity, forming a

composite key [11]. For example, Figure 2b has a composite

key comprising the “Location” and “Species” attributes.

4 PDF TABLE CORPUS: MANUAL ANALYSIS
To gain a better understanding of PDF tables, we sampled

and labeled a corpus of 447 PDF documents from an internal

collection of 1.5M documents gathered for research and de-

velopment. The corpus includes scientific publications, legal

proceedings, presentation slides, and personal correspon-

dences, of varying lengths (max = 302, µ = 18.6,σ = 32.9
pages), and includes both scanned and text-based documents.

For each document, we manually identify the data tables

and label the table type, the table orientation, whether the
table included hierarchies, and the headers and keys. We con-

sider tables that span multiple pages as a single table if they

share the same title or number; if a multi-page table does not

have a shared title or number, we count the table on each

page separately. To complete the labeling, we split the docu-

ments and tables amongst the paper authors and discussed

exceptional examples to reach agreement on the labels.

Number of Tables. Of the 447 documents in our corpus, 199

contained data tables, which resulted in a corpus of 1,171 PDF
tables (max = 73, µ = 5.88,σ = 9.84 tables per document).

Table Type. Figure 3 shows our labeled results. We found

that the vast majority of tables in our corpus are of the

vertical listing type (62.1%), withmatrices as the second most

common type (25.3%). The frequency of table types in our

corpus is notably different than those examined by Crestan

and Pantel [8]: Crestan and Pantel focus on labeling the type

of all table structures found in a large-scale web crawl (many

of which are purely for page layout), whereas we focus on

classifying the types of data tables from PDF documents.

Orientation.We found that the majority of our tables have

a vertical orientation (70.0%) and only a very small subset are

arranged horizontally (2.14%). The orientation of the table

is closely related to the table type, so this distribution of

orientations reasonably reflects the table type results.

Hierarchies. Hierarchies occur in 44.9% of the tables in our

corpus. Hierarchies were most common in the row structure

of the table (32.0% of tables), but also occurred in the columns

(20.2% of tables). Hierarchies in the data cells of the table

were uncommon (only 3.07% of tables) and often appeared

in tables with an unusual structure (e.g., other).
Headers and Keys. 10.2% of tables did not include any

headers, and 4.70% did not include any keys. As one might

expect, headers and keys frequently occurred in the first row

or column of the table. 85.7% of tables included a header

in the first row or column and only 49 tables (4.18%) had
headers that did not include the first row or column. 26.9% of

tables had headers in multiple rows or columns of the table.

86.4% of tables included keys in the first row or column of the

table. Tables rarely had keys inmultiple columns (only 7.86%),
which generally occurred when tables repeated columns or

when composite keys are necessary.

5 PDF TABLE ANALYSIS PIPELINE
Based on the above discussion, we propose and implement

a processing pipeline that includes: (1) detecting and (2) ex-
tracting tables from PDF documents; (3) classifying the table

to determine the table type and (4) analyzing the underly-

ing structure; (5) parsing the table based on the structure to

produce clean and usable data; and finally (6) reusing the ex-

tracted data for other interactive applications. The analysis

pipeline is shown in Figure 4. In this section, we present the

technical details and results of our pipeline implementation.

5.1 Detecting Tables in PDF Documents
We utilized the table detection and extraction process pre-

sented by He et al. [16], which uses a fully convolutional

neural network to segment pages and then heuristically ex-

tract tables; a verification network helps to remove false

positives, thus providing an effective and generalizable algo-

rithm for table detection in generic PDF documents. After the

detection phase of our analysis pipeline, the system found

that 246 of the original 447 documents did not include any

tables; The remaining 201 documents contained an average

of 4.75 tables per document, thus producing a corpus of 954

extracted tables. Comparing these results to our manually

labeled tables, we found that the detection phase correctly

identifies 551 of the original 1,171 tables (47.1%).

5.2 Extracting Tables from PDF Documents
At the end of the extraction phase, each document is repre-

sented using a JSON structure. Each part of the JSON struc-

ture is labeled with a “tag” property describing the purpose

of the component (e.g., “Table” or “Caption”). We search

through the JSON to identify all the subcomponents that are

tagged as a “Table” for analysis in the next phases of our

pipeline. The extraction phase introduces many errors into



PDF 
Documents Tables

Table 
Structure & 
Cell Content

Vertical Listing, 
Horizontal Listing, 
Matrix, Layout, …

Orientation, 
Header, Key, 

Hierarchy 
Information

Tuples & 
Data Type

Interactive
Reapplication

detect extract classify analyze parse reuse

Figure 4: The analysis pipeline includes several steps: (1) detecting tables in PDF documents and (2) extracting the tables.
We analyze the automatically extracted tables first to (3) classify the table type, and then to (4) analyze additional structural
properties of the predicted data tables: orientation, hierarchy, headers, and keys. Using these properties, we (5) extract the
data entities and can finally (6) reuse the extracted results for new interactive applications.

the process; 126 of the 954 detected tables are successfully

extracted without any errors (13.2%). The errors that are

introduced during this phase are described in Section 6.

5.3 Classifying the Table Type
Once tables have been extracted from the document, we build

a machine learning model to predict the table type. Follow-
ing the procedures from related work [4, 8, 10], we compute

numerous features based on the table contents and style (e.g.,

the frequency of numeric cells in a column or the maximum

length of the cell contents). For a full list of features used

in our classification, please refer the supplemental material.

Following the advice of Eberius et al. [10], we used the com-

puted features and our gold standard labels (described in

Section 4) to train a random forest model to predict the type

using Python’s machine learning library scikit-learn [26].

Using all 954 extracted tables from our corpus, we start

by splitting the corpus into quarters: we use three quarters

of the dataset to train a random forest model and produce

predictions for the remaining quarter. We repeat the train-

ing and prediction process four times with our subdivided

dataset, each time using a different quarter of the dataset

for testing. This procedure produces one prediction for each

table in our corpus. We then repeat this procedure 10 times

to produce 10 predictions for each table. We label the table

with the table type chosen by the majority of trials. 78.6%
of table types are correctly classified during the analysis.

Figure 5 shows a comparison of the manually labeled table

type with the predicted table type; the number of correctly

predicted types are shown along the diagonal.

5.4 Analyzing the Table Structure
After completing the type classification, we filter out all ta-

bles that are predicted as a layout type to exclude them from

further analysis; based on the predictions, filtering leaves us

with 727 tables to be analyzed. We then use machine learning

models and heuristic analysis techniques to compute addi-

tional structural properties of the table: the orientation, the
presence of hierarchies, and the headers and keys.
Orientation. Using the same features and analysis proce-

dure as the type, we use a random forest model to predict the

orientation of each table based on 10 trials. Our prediction

strategy for the orientation has an accuracy of 83.2%.
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Figure 5: 78.6% of table types are classified correctly (those
along the diagonal). However, 2.62% of tables are misclassi-
fied as layout tables and will be incorrectly excluded from
further analysis (e.g., false negatives) and 6.71% of tables are
misclassified as data tables (e.g., false positives).

Hierarchies. Using the same features and analysis proce-

dure as the table type and orientation, we use a random

forest model to predict whether or not tables include hierar-

chies in the rows, columns, or data based on 3 trials for each

type of hierarchy. Even with a smaller number of trials, the

hierarchy prediction for all three types of hierarchies is more

accurate than the other structural properties. In the predicted

data tables, 26.6% have row hierarchies, 15.4% have column

hierarchies, and only 2.61% of tables included data hierar-

chies. We reach a prediction accuracy of 87.8% for labeling

the presence or absence of row hierarchies, 90.0% for col-

umn hierarchies, and 98.2% for data hierarchies. Given that

data hierarchies were so infrequent in our corpus, additional

training data is needed to ensure the results are robust.

Headers.Weexplored several techniques from relatedwork

to identify the table headers. For our analysis pipeline, we use

the Senbazuru framefinder [6] to label each row of the table



with the row type (e.g., “Title”, “Header”, “Data”, or “Foot-

note”). To do this, we first convert the table from the JSON

structure to an Excel structure suitable for the Senbazuru

framefinder. We then run the framefinder on the spread-

sheets and identify any of the rows labeled with the type

“Header” as the table headers. To determine the accuracy of

our header detection, we compare the predicted results to the

header labels for the extracted table rather than the original

table. This comparison allows us to examine the accuracy

of this analysis step, since some of the extracted tables may

have erroneous removed headers, which thus cannot be iden-

tified by Senbazuru. We found that this strategy computes

the correct headers for 40.0% of the extracted tables.

Keys. We leverage the technique described by the Web

Data Commons [22] to calculate which columns are the keys

for the table. This procedure looks at each column to identify

a column that contains primarily unique, string values and

has an average cell length between 3.5 and 200 characters.

As with the headers, we compare the predicted results to the

extracted key labels, since this comparison provides a more

accurate representation of how the step performs on the

data it was provided. Using this technique, we can correctly

identify the table keys for 27.0% of the extracted tables.

5.5 Parsing the Table Data
For the data parsing stage of the analysis pipeline, as with the

structural analysis, we only extract data entities for tables

that were predicted to be data tables (727 of the original 954

tables). We have three different protocols for extracting the

data entities based on the table orientation: vertical, horizon-
tal, and not applicable. We currently do not attempt to extract

data hierarchies, though this process has been explored in

related work [4] and should be incorporated in future work.

To extract data from tables with a vertical orientation, we

traverse each row that is not denoted as a header row. For

each column, we lookup the property name in the matching

header column. The procedure for extracting data from tables

with a horizontal orientation is the same as that for a vertical

orientation, but we traverse the columns instead of the rows.

Matrix tables are neither vertical nor horizontal, so to extract

data from these tables, we produce a unique data tuple for

each cell in the table that is not denoted as a header or key;

the value of the cell is thus stored as the “value” of the tuple.

We then extract the cell contents for the headers and keys

that correspond to the cell of interest, and store these in the

data tuple as additional properties of the tuple.

6 ERRORS & COMPLICATIONS IN THE PIPELINE
Machine learning models commonly make inaccurate predic-

tions. Even with correct analysis and parsing, the formatting

of the table contents may constitute challenges for dynamic

reuse of the data. In this section, we present a taxonomy of

Class of Error Error or Complication Tables Frequency Affected Downstream Changes

Detecting Tables in PDF Documents

Detection
Errors

Table Not Detected 620 52.95% Table unavailable for data reuse

Detected Non-Table 200 20.96% Result not appropriate for data reuse

Extracting Tables from PDF Documents

Missing
Table Data

Table Spans Multiple Pages 279 29.25% Extracted data is incomplete

Table Only Partially Extracted 116 12.16% Extracted data is incomplete

Table Misclassified as Data Table

Excessive
Table Data

Includes Non-Table Content 179 18.76% Incoherent extracted data values

Merged Multiple Tables 13 1.36% Incoherent extracted data values 

Split Cell Into Multiple

Merged Adjacent Cells

Missing Whitespace Cells

Cell Misalignment

Incorrect
Table

Structure

230 24.11% Incoherent cell contents

220 23.06% Improper cell feature extraction

32 3.35% Structural mismatch between cells

5 0.52% Uninterpretable table rows/columns

Incorrect Symbol

Incorrect Number

Incorrect Contents

Incorrect
Cell Content

67 7.02% Does not accurately reflect original table

22 2.31% Misleading data values

22 2.31% Misleading cell contents

Analyzing Table Type and Structure

Table Misclassified as Layout Table
Type

Prediction
52 5.45% Table not appropriate for data reuse

22 2.31% Data values not recognized as usable

Incorrect Orientation

Incorrect HierarchiesStructural 
Identification

110 15.28% Data entities improperly extracted

154 21.39% Structural relationships not recognized

Incorrect Headers

Incorrect Keys

440 61.11% Data entities improperly labeled

521 72.36% Data entities improperly identified

Parsing the Table Data for Downstream Data Reuse

Repeated Table Structure

Cells Contain Units/Type

Cells Annotate Missing DataParsing and 
Data Reuse 
Challenges

12 1.26% Data entities incorrectly merged

79 8.28% Cells incorrectly typed

55 5.77% Cells incorrectly typed

Cells Contain Uncertainty

Cells Contain Excessive Information

Cells Contain Footnote

45 4.72% Uncertainty influences data reuse

36 3.77% Non-numeric values impact reuse

21 2.20% Cells incorrectly typed

Figure 6: We identify eight classes of errors that occur dur-
ing our analysis pipeline for detecting, extracting, classify-
ing, analyzing, and parsing tables from PDF documents. For
each type of error, we show the number of tables and the
frequency of the source of error in our table corpus.

errors and complications that arise throughout the analy-

sis process (Figure 6). We further discuss the downstream

impact of errors introduced at each stage of the pipeline.

Only 11 tables from our original corpus of 1,171 are cor-
rectly extracted, analyzed, and parsed (0.94%). 551 tables

were correctly detected (47.1%) and 111 were extracted with-
out errors (20.1%). Of the remaining 111 tables, 88 have the

type correctly predicted (79.3%) and 81 of those have the

orientation correctly predicted (92.0%). From the remaining

tables, 69 have the presence of hierarchies correctly anno-

tated (85.2%). Identifying the headers and keys is one of the

biggest hurdles in the analysis pipeline, with only 11 tables

labeled correctly at the end of the pipeline (15.9%).

6.1 Detecting Tables in PDF Documents
We identified two sources of error when detecting tables

in PDF documents (Figure 6, Detection Errors): table not

detected (e.g., false negatives) and detected non-table

(e.g., false positives). Tables that are not detected at the start

of our pipeline often exhibit deficient structural information

in the extracted JSON. For example, the table contents may

be collapsed into a single paragraph such that the structural

information is not encoded. We therefore cannot easily rein-

corporate the table into the analysis pipeline, and thus need

additional segmentation to extract the structure.



6.2 Extracting Tables from PDF Documents
Most of the tables in our corpus are plagued with extrac-

tion errors that impact the downstream effectiveness of our

pipeline. From our corpus of 954 extracted tables, only 126

tables are extracted without any errors (13.2%). The errors
labeled during the extraction phase fall into four high-level

categories (shown in Figure 6): missing table data, excessive
table data, incorrect table structure, and incorrect cell content.

Missing Table Data. The extraction sometimes fails to fully

extract or recognize the coherence of a particular table, which

leads to two distinct sources of error: table spans multiple

pages and table only partially extracted. These errors

are particularly problematic because they may mislead read-

ers who believe that the extraction is complete. For example,

visualizations of the partial results will produce an incom-

plete picture of the data and therefore cannot be trusted

outright. In some of the tables, each page of the table would

be individually extracted but not joined together in which

case manual comparison across representations would be

necessary. For some tables however, the page break would

displace only a small portion of the table (e.g., a single row)

that would then be overlooked by the detection process.

Excessive Table Data. In contrast to tables that are missing

data, some tables include information that does not belong in

the table. These extracted tables have often absorbed content

from the surrounding area, such as the page header, table

title, or values from a nearby table. Resolving these errors

for proper using in new interactive applications requires the

erroneousness data to be identified and shifted to the proper

location in the document. When the extraction has merged

multiple tables, the incorrect data may need to be properly

added to a different table structure or extracted separately.

Incorrect Table Structure. Incorrectly extracting the table

structure (or identifying structures that are not present) can

lead to downstream errors when attempting to parse the

table data. Each error in this class alters the original table

structure in a different way, and therefore requires different

actions to fix the error. While the cell misalignment error

is uncommon in our corpus (only 5 tables), it often produced

extreme alterations to the table structure and resulted from

tables that were poorly structured in the original document.

Figure 1 exhibits the three most common Incorrect Table
Structure errors. The header row of the table (which includes

the cell “South of Broad Branch Road”), has been incorrectly

split into two rows in the extracted table, due to the third

line of the original header being incorrectly identified as a

separate row. When the split on the header occurred, the

extraction failed to add a whitespace cell to the first extracted

row, which causes the text “Total for” to incorrectly span

the first two columns. Finally, several rows of the table have

been merged together: the rows corresponding to the entities

“Squirrel” and “Deer” have had all of their contents merged.

Incorrect Cell Content.While the previous classes of errors

have focused on the table structure, some tables exhibited

errors in the cell contents themselves. These errors can have

varying degrees of impact on the analysis and reuse of the

table data. We found that mathematical symbols were often

the hardest for the original document recognizer to identify

and correctly reproduce in the extracted table. However, the

error is often more problematic when the extraction incor-

rectly recognizes the cell number or contents. Alterations to

the numbers can drastically change the meaning of a table,

while not having a noticeable impact on the extracted result.

The extraction also sometimes misplaces the cell contents,

thus producing a result that can be analyzed and parse, but

with the value misattributed to the wrong property or entity.

6.3 Classifying the Table Type
Erroneously labeled data tables (e.g., table misclassified as

data table) are false positives: tables which will be included

in the analysis when they should have been removed. A

small fraction of the type predictions are false negatives (e.g.,
table misclassified as layout table): tables which will

be incorrectly excluded from subsequent analysis. Figure 5

labels the quadrants corresponding to these errors.

6.4 Analyzing the Table Structure
To correctly parse the data, we must first understand the

structural properties of the table. However, errors often arise

in our prediction of the table structure for the data tables

(Figure 6, Structural Identification). Each of these properties

parameterizes our procedure for extracting the data into

coherent data entities, so errors in the classification can lead

to improperly parsed data, and thus incorrect data reuse.

6.5 Parsing the Table Data
Unlike the errors described previously, this class of errors

does not lead to a misrepresentation of the table itself, but

rather introduces downstream complications when trying to

parse or reuse the table data (e.g., for dynamic visualization).

The repeated table structure error occurs when the

table layout is reused in different parts of the table; for ex-

ample, a table may include data for only two properties, but

arrange the entities into four columns. In this case, multiple

entities may occur on a single row of the table but only one

will be recognized by the parsing behavior, thus leading to

potential data loss in the parsed data. Recognizing this com-

plication is essential for reflowing the table layout and fully

extracting the underlying data.

The other four complications each require additional data

cleaning before the underlying data can be reused appro-

priately (e.g., for further analysis or visualization). When



cells contain units/type, it could be beneficial to display

this information on the axis or legend of a visualization

or use the information to correct the automatically inter-

preted data type or labels; similarly, when cells contain

footnote, properly linking the extracted data with the table

footnote can ensure that readers do not overlook information

pertinent to their interpretation of the results. When cells

contain uncertainty, it may be appropriate to design cus-

tomized visualizations or to otherwise modify the way the

data is reused in new interactive applications; however, dif-

ferent tables encode uncertainty information differently, thus

making it harder for a system to understand and reproduce

the data without additional support from the reader.

Figure 1 exhibits the cells contain units/type and cells

contain excessive information complications. For exam-

ple, the row that describes the “Percent of Road Length” in-

cludes the symbol “%” in each cell of the row; this annotation

causes the cell contents to be interpreted as a string rather

than a number. Similarly, the row “Average annual roadkill

per mile” includes excessive information because the cells

show the process of producing the average, in addition to the

final value. These complications cause the cell data to gen-

erally be interpreted as strings rather than numbers, which

impacts the computed features used in our analysis pipeline

and may complicate downstream reuse of the extracted data.

6.6 Cascading Errors
Each stage of our analysis pipeline builds on the results of

the previous stage, so errors at any point can lead to even

more errors downstream. The impact of these cascading er-

rors is shown in Figure 1: when data cells are merged in

the extracted table, the individual cells are labeled with the

incorrect data type; the data types are used in the classifi-

cation procedure, which impacts the prediction of the table

type and structural properties. The incorrect cell types also

contributes to improper data parsing. In order to produce

usable data that can be appropriately analyzed or reused in

interactive applications, it is important to mitigate upstream

errors to limit their subsequent impact.

7 ERROR CORRECTION ONMOBILE DEVICES
In order to mitigate errors introduce during the analysis

pipeline, we contribute a system for fixing extraction er-

rors on the fly. We propose two sets of lightweight table

editing interactions on mobile devices: a set of gestures for

directly manipulating the table contents and a toolbar based

approach. While the gesture technique supports rapid edit-

ing interactions directly on the table, it requires readers to

remember the mapping between operations and gestures.

In contrast, the toolbar provides a context-sensitive list of

operations that apply to the current selection, but displaces

the reader’s focus from the table to other parts of the device.

For our implementation, we focus on mobile interfaces,

but also note that our proposed techniques also work out

of the box on desktops. With mobile devices becoming per-

vasive for a variety of different tasks, they present an in-

teresting challenge for both viewing next-generation PDF

documents and for addressing the challenges that may arise

from an automatic analysis pipeline. The smaller form fac-

tor and informal setting of a mobile device emphasize the

need for interactive repair operations to be composable and

lightweight, unlike more robust data cleaning systems.

7.1 Mitigating Seven Common Analysis Errors
We do not address all the errors from our taxonomy in the

scope of this paper; instead, we focus on addressing struc-

tural errors in the table that directly impact the extraction

of coherent data tuples (Figure 6, in blue). Unlike errors or
complications from the table content itself, structural errors

are amenable to rapid, gestural modifications which can be

more easily reapplied to similar structural errors in other

tables. We designed seven interactions for modifying the ex-

tracted table structure. The goal of these interactions is not to
support the full range of operations required by a robust data

cleaning process (such as [9, 19, 30]), but to allow for rapid,

lightweight modifications on the fly. With the interactions

we support, we can fix 1,627 errors from those identified

in the tables. In doing so we improve the number of fully

correct tables from 11 to 108 (e.g., 9 times the number of

tables). In future work, we would like to explore interactions

to address more of the errors from our taxonomy.

7.2 Lightweight Table Editing Operations
To view the extracted table, readers tap directly on the ta-

ble in the original document. The extracted table is then

displayed below the original table; readers can toggle the

visibility of the original and extracted table using the toolbar

that appears at the bottom of the screen. As the reader selects

parts of the extracted table, they can modify the structure us-

ing gestures or by selecting from the recommended actions

in the toolbar at the bottom. Each action in the toolbar is

associated with an icon [12].

Select. To make any changes to the table, readers must first

select the rows, columns, or cells they want to change. Cells

are selected by tapping on them. Swiping left or right from

an unselected cell selects the row; swiping up or down from

an unselected cell selects the column.

Insert. The errors missing whitespace cells and cell

misalignment directly impact the structural layout of the

table contents. Merging or splitting cells can also introduce

new structural anomalies in the table that require the user

to insert new cells to rearrange the structure. To insert cells

relative to a selection, the reader drags the selection in the

direction it should move; for example, in Figure 1, to insert
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Figure 7: (a) The original table. (b) The extracted table. (c) The reader inserts a cell above “Non-grass species”, which only
inserts a cell in the first column. (d) Inserting cells below the numbers leaves “Non-grass species” in its own row.

a cell to the left of “Total for”, the reader drags the cell to

the right . The reader may also select “insert” on the

toolbar and then choose the direction (e.g., “left” ). The

icons indicate the direction the selection will move rather

than where the new elements will be added.

Inserting a row or column produces an empty row or col-

umn with the same number of cells as the original selection.

Inserting a cell adds a new cell in the specified direction.

The insertion first reduces the span of the original cell if it

spanned multiple rows or columns; in Figure 1c.1 inserting a

cell to the left of “Total for” causes the “Total for” cell to align

with only one column of the table rather than spanning the

first two columns. If the selected cell does not span multiple

columns, the insertion only adds a new cell to the original

row or column of the selected cell. In Figure 7c, inserting a

cell above “Non-grass species” only inserts a cell in the first

column; to move “Non-grass species” to a row by itself, the

reader can then insert cells below each number (Figure 7d).

Merge. To fix the split cell into multiple error and

merge cells back together, the reader uses a pinch gesture or

selects “merge” from the toolbar. Merging adjacent cells

merges the contents of the cells. When merging adjacent

rows, the cells are merged along the table columns; for merg-

ing adjacent columns, the cells are merged based on the row.

To merge adjacent rows or columns, the selections must have

the same number of cells. For example, in Figure 1, the reader

must first insert a cell into the first row (Figure 1c.1) to en-

sure that the two header rows each have five cells; the reader

can then merge the header rows together, which merges the

contents in each column (Figure 1c.2).

Split. To fix the merge adjacent cells error and split the

contents back apart, the reader uses a zoom-out gesture or

selects “split” from the toolbar. When applying the split

operation to row selections, the row is split based on line

breaks in the original document. For example, in Figure 1,

several of the data rows were merged in the original extrac-

tion (e.g., “Squirrel” and “Deer”); using a split on these rows

breaks up the contents based on the text positions in the

original document. For column selections, the split occurs

based on spaces in the cell contents. For cell selections, the

split first looks for new lines in the cell contents; if no new

lines are found, the split occurs based on spaces.

Delete. To address the complication that the table includes

non-table content, we support a delete operation on the

table cells. Delete also allows readers to remove parts of the

original table to focus their analysis. To delete a selection,

the reader double taps the selection or selects “delete” in

the toolbar. Deleting a selected row or column is straight-

forward. When a cell in the deleted selection spans multiple

rows or columns, the cell still exists in rows or columns that

were not deleted. For example, in Figure 7, deleting the col-

umn containing the cells “Management Priority Category”,

“4”, and “” removes the cells “4” and “”, but leaves “Manage-

ment Priority Category” spanning the cells “1”, “2”, and “3”.

Deleting individual cells requires other cells in the table to

expand into the vacated space. This expansion occurs based

on the table type; for example, in vertical tables (in which

the entities are represented as rows), the cells within the row

expand into the vacated space.

Fix Header/Key. The analysis pipeline frequently encoun-

tered the error incorrect headers or incorrect keys. Cells

labeled as headers and keys are colored gray, with headers in

bold and keys in italic. Readers can select rows or columns

and use a long press to mark them as a header or key, or the

reader can select “is header” or “is key” on the toolbar.

The reader can use a double tap to remove the header or key

status, or select “not header” or “not key” on the toolbar.

Other Operations. From the toolbar at the bottom of the

screen, the user can also “undo” the previously performed

action or change the visibility of the extracted table by mod-

ifying the “mode” . Finally, the reader can change the

“type” of the table (e.g., “vertical” , “horizontal” , or

“matrix” ), which changes parsing behavior for the table

data. We represent the table type visually by varying the

thickness of the table borders. In a matrix, we have a thick
border around every cell to show that each cell is a unique

entity. For a vertical listing, we place a thick border above

and below the row, and thin borders between columns to

indicate that each row is a unique entity; horizontal listings
are similar, but with the opposite orientation.

8 EVALUATION OF TABLE EDITING TECHNIQUES
To evaluate the design and utility of our two table editing

approaches for resolving errors in automatically extracted

PDF tables, we conducted a user studywith 17 participants. In

this section, we discuss our study methods and experimental

results. We have included the session script and post-task

questionnaire in the supplemental material.



session 1: primary device
interaction 1

Training Group1A or 1B

session 2: primary device
interaction 2

Training Group1B or 1A

session 3: primary device
interaction: any

Group2A

session 4: secondary device
interaction: any

Group2B Questionnaire

Figure 8: The evaluation procedure: participants were asked to identify and fix errors in ten tables using different interaction
techniques and devices; we counterbalanced the devices (tablet and phone), techniques (toolbar and gesture), and table groups
across participants, as described in the text. Participants then completed a post-study questionnaire about their experience.

Participants.We recruited 17 participants (8 female, 9 male)

that had prior experience with data tables and with reading

PDFs on their mobile devices. Participant ages ranged from

21 to 36 (µ = 27.1,σ = 3.86). Participants were all college
graduates – Bachelors (4), Masters (12), or P.h.D (1) – and

most were still pursuing additional degrees (14). Participants

received a $25 gift card for completing a one hour session.

Tasks. We selected 10 tables from our corpus of extracted

PDF tables. We separated the tables into four groups that

correspond to the different parts of our evaluation procedure.

group1a and group1b each include three tables that are

ordered based on their difficulty, where we define difficulty

as the number and variety of errors exhibited in the table.

The groups are defined such that each pair of tables exhibit

similar errors. For example, the first table in each group has

two errors: the table requires one row to be marked as a

header, and one header row to be marked as data, but the

tables themselves are different. The second table in each

group has four errors, and requires a combination of insert

and merge operations to repair. Finally, the last table in each

group also contains four errors, but requires at least three

distinct operations to fix. group2a and group2b each have

two tables; the first table in each group is relatively simple

(3 errors) and the second is more complex (7+ errors).

Procedure. Every participant performed three table repair

sessions on a primary device (phone or tablet) and one addi-

tional session on a secondary device (Figure 8). We counter-

balanced the primary and secondary devices across partici-

pants. Devices were provided by the authors; the tablet was

a 10.5 inch iPad Pro and the phone was a 4.7 inch iPhone 7.

Using the primary device, each of the first two sessions

focused on one interaction approach (gesture or toolbar),

and involved training for the interactions and one task con-

sisting of three tables (group1a or group1b). We counter-

balanced the order of the interaction approaches and tasks

across participants. During the training in each session, par-

ticipants were shown a sample table in our table editing

interface. We described the errors in the table and the strat-

egy for fixing the errors; the participant followed along by

performing the table editing operations on the table as they

were described. For the task in each session, participants

were shown three tables (either group1a or group1b); for

each table, the participant first inspected the original and

extracted tables, and described the errors they saw and their

plan for fixing them. Participants then fixed the errors using

the table editing techniques they had just learned.

In the third session with the primary device, the partici-

pants were shown two tables in group2a and were asked to

identify and fix errors using any of the two interaction ap-

proaches they preferred. Participants could switch between

the interaction techniques at any time. Finally, the partici-

pants switched to the secondary device and used any inter-

action approach to fix the two tables in group2b.

We logged the table editing interactions that the partic-

ipant performed, the time of each operation, and the tech-

nique (toolbar or gesture) that was used. After completing

all the tasks, participants filled out a post-study question-

naire with their general impressions about the table editing

experience and demographic information. Participants also

rated the ease of use and their preferences for the various

interaction techniques and devices on a 5-point scale.

8.1 Quantitative Results & Analysis
We processed the participant results to only count the core

actions performed; we filtered out the selections and clear

actions since participants often performed these actions ac-

cidentally when navigating on the page, or without using

a follow-up action when examining the table. For each ta-

ble, we define the completion time as the amount of time

between the first and last core action performed on the table.

Participants performed 18.6 core actions (σ = 21.8) on aver-

age per table, with an average completion time of 2.22 min-

utes (σ = 2.27) per table, across all 10 tables in the study.

We first analyzed the results of the first two study ses-

sions in which participants were limited to one interaction

technique (gesture or toolbar) per session. We used linear

mixed-effects models for the number of actions performed

to repair the table and the log task time. Each model in-

cludes fixed effects for the device (tablet and phone), condi-

tion (gesture and toolbar), and log task order, plus random

intercepts for the subject predicated on the condition, and

the table. The task order is defined from 1 to 12, where 1 and

4 are the two training tasks. Our analysis script and data are

included in the supplemental material.
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Figure 9: The median score (in black) and distribution (in
blue) of participant ratings on the post-task questionnaire.

Across the 6 tables in the first two sessions, participants

performed an average of 21.0 core actions (σ = 24.9) per
table, with an average completion time of 2.39 minutes (σ =
2.63) per table. We found a significant effect of the condi-

tion on the number of actions performed (χ 2(2) = 9.38,p <
0.01), with participants performing fewer actions when using

the toolbar. We also found a significant effect of the condi-

tion (χ 2(2) = 21.1,p < 0.001) and log task order (χ 2(2) =
20.5,p < 0.001) on the log completion time for the task, with

participants faster when using the toolbar than the gestures.

However, we did not find a significant effect of the device on

the log task time or number of actions performed.

In the last two sessions when participants had the option

to choose between using the gestures or toolbar, participants

choose the toolbar for 57.4% of the repair actions. The prefer-

ence for the toolbar was also the case for many of the actions

individually, with one notable exception: when using the

tablet, participants used the insert gesture more frequently

than using insert on the toolbar. Whereas on the toolbar,

participants had to select insert and then the direction, the

gesture manipulation was more fluid with a simple drag. We

ran a linear mixed-effects model on the percent of gesture

interactions used, with fixed effects for the device (tablet

and phone), condition for Session 2 (gesture or toolbar),

plus random intercepts for the subject predicated on the con-

dition, and the table. We found that the training condition for

Session 2 had a significant effect on the percent of gestures

used (χ 2(2) = 7.09,p < 0.01), with participants using fewer

gestures after having just completed the toolbar condition.

After completing all tasks, participants rated their im-

pressions of the interaction techniques and devices in a

questionnaire. We used 1-sample nonparametric Wilcoxon

signed rank tests with a null hypothesis that the result is

neutral (e.g., 3 on a 5-point scale) on the self-reported re-

sults for the post-task questionnaire. We found significant

positive effects on how easy participants found it to iden-

tify (median = 2,p < 0.01) and fix (median = 2,p < 0.1) er-
rors in the tables. Participants generally found the toolbar

easier to use than the gestures (median = 2,p < 0.05) over-
all and particularly on the phone (median = 1.5,p < 0.05).

Participants significantly preferred using the tablet over the

phone (median = 4.5,p < 0.01). Figure 9 shows the median

score and distribution of the participants’ ratings.

8.2 Qualitative Results & Discussion
We summarize some of our main takeaways from partici-

pants’ responses to the post-task questionnaire; participants

provided free text responses, so more participants may have

agreed with any given opinion if asked directly.

Thirteen participants mentioned that one of the largest

challenges was in learning and remembering the gestures;

P16 explained that “It takes some time to get used to and re-
member the gesture but once I get used to it, it is quite intuitive.”
The gestures were designed to mirror the underlying behav-

ior and to enable more direct modification on the table itself.

Eight participants felt the gestures were quite natural and

eight participants explained that they were useful for rapidly

editing the table. P2 explained that “I liked that [the gestures
are] intuitive and fast (and fun!).”
The available gestures and corresponding actions were

sometimes hard to remember, so eleven participants partic-

ularly liked that the toolbar provided a reminder of what

could be done; P11 explained that “I liked that it was easy to
see the available options and [the toolbar] helped me figure out
how to fix problems.” In addition to providing a reminder of

what could be done, the toolbar helped users create a plan for

how to approach the table editing process and suggestions

of what actions would work well for their current selection.

The gestures and toolbar each provide a unique table edit-

ing experience, and three participants explicitly expressed

a preference for using them both. When both options were

available, P4 said that “I used gestures for simpler actions,
and the toolbar for more involved operations” and P16 also

noted that “When I get more familiar with the gesture and
the toolbar, I can combine both in a pretty efficient way and
make the editing go faster.” While we primarily evaluated

the techniques separately, the designs are complimentary

within the table editing system and could be effectively used

together in the last two sessions of the study.

While participants overwhelmingly preferred the tablet

for the table editing interactions, they generally mentioned

that in terms of actual use they would be more inclined to

use a phone. To explain this preference, P7 noted that the

“tablet would be easier, but I rarely have one with me”. When

asked about their use of mobile devices for viewing PDF doc-

uments, only P17 reported using only a tablet. While several

participants did like the utility for editing tables on the fly,

three participants expressed an interest in the availability of

these techniques for the desktop (“my real preference” - P7).
For our study, we were interested in exploring techniques for

supporting lightweight mobile interactions for table editing,

but our techniques also work out of the box for desktops.



9 LIMITATIONS AND FUTUREWORK
The table editing approaches presented and evaluated in this

paper support lightweight editing for common extraction

errors. The goal of this work was not to produce a fully

functional data wrangling platform (e.g., [9, 19, 30]), but

to explore techniques for rapid editing on mobile devices.

For more complex analysis of tabular data, customized data

wrangling or visualization systems may be more effective.

Our system presents a proof of concept about how readers

might interact with and benefit from a system that can recog-

nize the document contents for eventual reuse in interactive

applications. Future work should explore additional tech-

niques for correcting a wider variety of errors from our tax-

onomy; in particular, we would like to support re-extraction

of tables that were not originally detected, the ability to join

data across multiple extracted tables, and how to address

errors or complications in the table content itself.

In order to support more accurate extraction of table data

also requires future work at other stages of the analysis

pipeline. For example, we currently do not adequately handle

hierarchies in the data tables, so these relationships may

be lost in our extracted data. However, related work has

examined techniques for this type of data extraction [4].

Our pipeline would also benefit from additional work on the

identification of table headers and keys.

During the evaluation, many participants found it tedious

to apply similar actions for correcting errors in multiple parts

of the table; we would like to explore techniques to support

reapplication of table editing interactions to similar errors

in the table or across similar tables. An end-to-end system

should be able to incorporate lessons learned from readers

back into the original analysis pipeline to reduce the number

of downstream errors that are presented to a reader.

10 CONCLUSION
In this paper we described a taxonomy of errors and compli-

cations from the table extraction and analysis process. We

found that on a corpus of 1,171 PDF tables, only 11 tables

were correctly processed at the end of the analysis pipeline.

To mitigate some of these cascading errors, we present two

complimentary approaches for lightweight table editing on

mobile devices. In an evaluation with 17 participants, we

show that readers can repair tables with even complex ex-

traction errors in about 2.2 minutes on average per table.
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