
Figure 1: A code snippet with in situ vi-

sualizations of program variables in Vega:

a declarative visualization grammar. His-

tograms show the distribution of values

for array variables, with the count and

range shown on hover. The symbol vari-

able is an array of five unique strings rep-

resenting different companies (aapl, amzn,

ibm, goog, and msft), one of which oc-

curs less frequently in the dataset than the

others (goog). The indexed_price variable
is an array of numbers corresponding to

the stock price. Whereas the symbol and

indexed_price variables are both arrays of

a simple type, the index_term variable is

an array of objects; the histogram is col-

ored orange to differentiate it from the

others and shows only the value distribu-

tion for the index_term.price property.

Languages & Visualizations to Enable

Effective End User Programming

Jane Hoffswell

University of Washington
Seattle, WA, USA
jhoffs@cs.washington.edu

ABSTRACT

Programming requires expertise to employ effectively. My research aims to help end user programmers
more effectively author, understand, and reuse code and data through the design of new languages and
program visualization tools. New programming languages can raise the level of abstraction to focus on
relevant domain-specific details. Improved tools can better alignwith and enrich end user programmers’
mental models. Visualizing program state and behavior promotes program understanding, and can
proactively surface surprising or incorrect results. My future work proposes to explore new visualization
techniques and languages to facilitate understanding of constraint programming systems.

CCS CONCEPTS

•Human-centered computing→Human computer interaction (HCI); Visualization systems

and tools; Graph drawings; • Software and its engineering→ Constraints.

KEYWORDS

End user programming; program understanding; debugging; visualization; graph layout; constraints.

ACM Reference Format:

Jane Hoffswell. 2019. Languages & Visualizations to Enable Effective End User Programming. In CHI Conference
on Human Factors in Computing Systems Extended Abstracts (CHI’19 Extended Abstracts), May 4–9, 2019, Glasgow,
Scotland UK. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3290607.3299067

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5971-9/19/05.
https://doi.org/10.1145/3290607.3299067

https://doi.org/10.1145/3290607.3299067
https://doi.org/10.1145/3290607.3299067


Thesis Statement: The design of new lan-
guages and program visualization tools that
raise the level of abstraction from low-level sys-
tem details to domain-specific concepts and
operations can help end user programmers bet-
ter author, understand, and reuse code and data.

INTRODUCTION

Common programming paradigms require expertise to employ effectively, making them inaccessible
to a wide group of end user programmers. End user programmers often have unique expertise that
informs the types of computation and development tasks they need to perform [7]. My work aims to
help end user programmers more effectively author, understand, and reuse code through the design
of languages and visualization tools that shift the focus from low-level system details to important
domain-specific concepts and operations. My research into holistic code visualizations [5, 6] aims to
support program understanding during all phases of the development process, not just while
debugging. I further explore the design of languages that allow end user programmers to develop
customized visualizations using their unique domain-specific knowledge [4, 12]. My work on
SetCoLa [4] demonstrates the expressive power of constraint programming systems, but does not
address the program understanding needs explored in my prior work. Going forward, my dissertation
aims to facilitate program understanding of constraint programming systems for end user
programmers, by leveraging the lessons learned from my research into holistic code visualizations.

extracellular

plasma membrane

cytoplasm

nucleus

transcriptionally
regulated
genes

Figure 2: The layout for the TLR4 biologi-

cal system produced using only eight con-

straints in SetCoLa: a language for high-

level, domain-specific graph layout con-

straints. Layers correspond to the loca-

tion of biomolecules in a cell; immune re-

sponse outcomes are grouped at the bot-

tom by molecular function.

Background: I am a fifth year PhD student working with Professor Jeffrey Heer in the Paul G. Allen
School of Computer Science and Engineering at the University of Washington. I conduct research as
part of the Interactive Data Lab, with a focus on the design of new interactive systems for facilitating
code authoring and program understanding through the use of visualization. I am currently refining
the scope of my thesis on the design of end user programming systems for constraint programming.

RELATEDWORK

This section covers only a small subset of the related work that has inspired my research. End user
programming engages a wide group of potential users that incorporate domain-specific knowledge
into their computational tasks [7]. Ko et al. describe the types of programming tasks commonly
performed [9] and program understanding challenges [8]. Bret Victor presents design considerations
for systems that leverage visualizations of program behavior [13]. Constraint systems are a flexible
approach for domain-specific applications such as graph layout [3], user interface layout [1], and
recently the compilation and reapplication of visualization design guidelines [10]. These topics inspire
my research on new languages and program visualization tools to facilitate end user programming.

RESEARCH PROGRESS

My prior work explores the design of languages that allow users to focus on domain-specific concepts
and operations rather than low-level system details [4, 12] and the design of visualization tools to
support program understanding [5, 6]. Figure 4 shows the projected timeline for my dissertation.



Authoring & Reusing Domain-Specific Graph Layouts

Domain experts often create complex visualizations of graph data based on domain-specific properties
relevant to the layout. For example, customized graph layouts are commonly used to visualize biological
systems based on knowledge of cellular structure (Figure 2). However, common approaches to domain-
specific layout require domain experts to either use ill-fitting techniques that are not ideal for the
task at hand, or to create tools specifically designed for their particular use case (e.g., Cerebral [2]).
Constraints support flexible custom layouts, but can be tedious to author when large layouts require
hundreds of constraints between individual nodes in the original graph (e.g., WebCoLa [3]).

c

b

a

Figure 3: Several visualizations that fa-

cilitate program understanding in Vega.

(a) A timeline shows all modifications to

a variable (gray boxes for indexDate). The
green line shows the variability of the

indexed_price variable from the underly-

ing data source. (b) When the variabil-

ity of the indexed_price peaks, the prop-

erty contains all zeroes (top), rather than

a distribution of values (bottom). (c) The

user inspects the programmatic transfor-

mations used in the code as a tooltip di-

rectly on the output Vega visualization.

To facilitate authoring custom graph layouts, I developed SetCoLa [4]: a language for specifying
high-level constraints for graph layout based on domain-specific properties of the graph. Whereas
prior constraint systems utilize node-level constraints between specific nodes [3], SetCoLa reduces
the number of user-authored constraints by one to two orders of magnitude. In SetCoLa,
constraints are applied to sets of nodes based on the domain-specific properties of the nodes rather
than between pairs of nodes in the graph. The layout in Figure 2 requires only eight constraints in
SetCoLa; the core SetCoLa layout requires just one constraint to specify the order of the layers and
two constraints to specify the boundaries of the graph, with the remaining constraints customizing
the groupings and inter-node padding. This specification generates 363 constraints for the underlying
constraint engine, WebCoLa [3]. This approach facilitates program understanding because there
is a direct mapping between the graph layout and domain-specific properties of the nodes. This speci-
fication strategy also supports reuse of custom graph layouts because the layout only leverages
domain-specific properties, which can be generalized to other graphs with the same properties.

Visualizations to Aid Program Understanding & Authoring

My prior work also explores the design of Vega [12]: a declarative visualization grammar that allows
programmers to focus on the design of an interactive visualization rather than the low-level imple-
mentation details. However, this approach introduces a gap between the code the programmer writes
and the system output, which often requires a complex mental model of the behavior to understand
and debug. To help end user programmers better author and understand Vega code, I designed several
approaches to program visualization [5, 6]. These visualizations provide a holistic view of the program
behavior by automatically visualizing the state and/or history for all of the variables in a Vega program.

The system automatically displays all value updates to all program variables on a timeline (Figure 3a).
The underlying data for the program is displayed in a separate tab, with histograms showing the
distribution of the values for each data property (Figure 3b); the variability of these data distributions
are visualized above the timeline (e.g., the green line in Figure 3a). End user programmers can use time-
traveling debugging to revisit past runtime states by selecting different points on the timeline. A tooltip



displays programmatic transformations to the data directly on the output Vega visualization (Figure 3c).
In an evaluation with end user programmers unfamiliar with both the specific code and the Vega
programming language, the participants could effectively understand the source code to identify

bugs or crucial dependencies in the underlying data flow behavior.
However, this debugging environment required end user programmers to intentionally switch

between different views based on their current programming task (e.g., reviewing code, inspecting the
timeline, or viewing the data). In my follow-up work [6], program visualizations are displayed directly
inline in the source code (Figure 1), thus allowing programmers to inspect the history of values for
program variables while unloading the burden of recalling or mentally tracking the program execution.
Instead of switching between multiple views to write, test, and debug their code, programmers can
maintain a focus on authoring new code while viewing the behavior of program variables inline.

FUTUREWORK

sept.
oct. 
nov.
dec.
jan. 2019
feb.
mar.
apr.

Thesis Proposal

CHI Submission

may
june
july
aug.
sept.
oct.
nov.
dec.
jan. 2020
feb.
mar.
apr.

Research

CHI

Internship

may
juneGraduation

Defense

Thesis

Job 
Search

VIS

Job 
Search

Research

Research

Figure 4: Dissertation Timeline

In future work, I propose to explore new techniques to encourage an effective exchange between end
user programmers and the technology they use. I am particularly interested in how new visualization
techniques can be used alongside automatic program analysis to recommend or attract attention to
potential areas of interest in a programmer’s code. Such approaches should help end user programmers
focus their attention during debugging or program understanding tasks to reduce the amount of
wasted development time [11]. Furthermore, these approaches should be complimentary to the goals
of the end user programmer and should not detract from the code authoring process.

I believe that better supporting program understanding in complex domains can enable more end
user programmers to engage with systems that have otherwise required expertise to use effectively.
One such area that I would like to explore is the utility and interpretation of constraints. Constraints
are a flexible way to express behaviors or circumstances relevant to a user; for example, constraints can
be used for graph or interface layout, scheduling, and various forms of optimization or prioritization.
However, the execution and invalidation of constraints can be hard to comprehend in complex systems.
By developing new approaches to program understanding, I hope to open the domain to a wider
group of potential users and better support the effective use of new constraint-based approaches.

CONTRIBUTIONS & CONCLUSION

My work on new domain-specific languages [4, 12] and automatic visualization tools [5, 6] helps end
user programmers better navigate and understand code by allowing them to focus on the domain-
specific concepts and operations of interest rather than the low-level system details. My work on
SetCoLa [4] demonstrates the utility of high-level languages for customized graph layouts and
the potential benefits of constraint-based systems. My future work aims to combine constraint
programming with new visualization techniques to facilitate code authoring, understanding, and reuse.



ACKNOWLEDGMENTS

I would like to thank my collaborators, the Interactive Data Lab at the University of Washington,
and the many others who have supported me in my research thus far. Special thanks to my advisor,
Jeffrey Heer. This work was supported by a Moore Foundation Data-Driven Discovery Investigator
Award and the National Science Foundation (IIS-1758030).

REFERENCES

[1] Greg J Badros, Alan Borning, and Peter J Stuckey. 2001. The Cassowary Linear Arithmetic Constraint Solving Algorithm.
ACM Transactions on Computer-Human Interaction (TOCHI) (2001). https://doi.org/10.1145/504704.504705

[2] Aaron Barsky, Tamara Munzner, Jennifer Gardy, and Robert Kincaid. 2008. Cerebral: Visualizing Multiple Experimental
Conditions on a Graph with Biological Context. IEEE Transactions on Visualization & Computer Graphics (2008). https:
//doi.org/10.1109/TVCG.2008.117

[3] Tim Dwyer. 2017. cola.js: Constraint-Based Layout in the Browser. http://marvl.infotech.monash.edu/webcola/. Accessed:
2018-10-10.

[4] Jane Hoffswell, Alan Borning, and Jeffrey Heer. 2018. SetCoLa: High-Level Constraints for Graph Layout. Computer
Graphics Forum (Proc. EuroVis) (2018). https://doi.org/10.1111/cgf.13440

[5] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual Debugging Techniques for Reactive Data Visualization.
Computer Graphics Forum (Proc. EuroVis) (2016). https://doi.org/10.1111/cgf.12903

[6] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code with In Situ Visualizations to Aid Program
Understanding. ACM Human Factors in Computing Systems (CHI) (2018). https://doi.org/10.1145/3173574.3174106

[7] Andrew J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, Joseph
Lawrance, Henry Lieberman, Brad Myers, et al. 2011. The State of the Art in End-User Software Engineering. ACM
Computing Surveys (CSUR) (2011). https://doi.org/10.1145/1922649.1922658

[8] Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six Learning Barriers in End-User Programming Systems. In IEEE
Symposium on Visual Languages-Human Centric Computing. IEEE, 199–206. https://doi.org/10.1109/VLHCC.2004.47

[9] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers Seek,
Relate, and Collect Relevant Information During Software Maintenance Tasks. IEEE Transactions on Software Engineering
(2006). https://doi.org/10.1109/TSE.2006.116

[10] Dominik Moritz, Chenglong Wang, Gregory Nelson, Halden Lin, Adam M. Smith, Bill Howe, and Jeffrey Heer. 2019.
Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco. IEEE Transactions
on Visualization & Computer Graphics (Proc. InfoVis) (2019). https://doi.org/10.1109/TVCG.2018.2865240

[11] David Saff and Michael D Ernst. 2003. Reducing Wasted Development Time Via Continuous Testing. In 14th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 281–292. https://doi.org/10.1109/ISSRE.2003.1251050

[12] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2015. Reactive Vega: A Streaming Dataflow
Architecture for Declarative Interactive Visualization. IEEE Transactions on Visualization & Computer Graphics (Proc.
InfoVis) (2015). https://doi.org/10.1109/TVCG.2015.2467091

[13] Bret Victor. 2012. Learnable Programming: Designing a Programming System for Understanding Programs.
http://worrydream.com/LearnableProgramming. Accessed: 2018-26-11.

https://doi.org/10.1145/504704.504705
https://doi.org/10.1109/TVCG.2008.117
https://doi.org/10.1109/TVCG.2008.117
https://doi.org/10.1111/cgf.13440
https://doi.org/10.1111/cgf.12903
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/ISSRE.2003.1251050
https://doi.org/10.1109/TVCG.2015.2467091

	Abstract
	Introduction
	Related Work
	Research Progress
	Authoring & Reusing Domain-Specific Graph Layouts
	Visualizations to Aid Program Understanding & Authoring

	Future Work
	Contributions & Conclusion
	Acknowledgments
	References

