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Abstract
Vega is a declarative visualization grammar that decouples specification from execution to allow users to focus
on the visual representation rather than low-level implementation decisions. However, this representation comes
at the cost of effective debugging as its execution is obfuscated. By presenting the developer with Vega’s data flow
graph along with interactive capabilities, we can bridge the gap between specification and execution to enable
direct inspection of the connections between each component. This inspection can augment the developer’s mental
model of the specification, enabling the developer to more easily identify areas of interest and implement changes
to the resulting visualization.

Categories and Subject Descriptors (according to ACM CCS): D.2.2 [Software Engineering]: Design Tools and
Techniques—User interfaces

1. Introduction

Declarative languages can accelerate the development pro-
cess by decoupling specification from execution [HB10].
This separation enables rapid iteration and exploration as de-
velopers only need to update the specification rather than
reformulating the control flow. Similarly, declarative lan-
guages promote code reuse as the specification can easily
be retargeted to a new dataset or augmented with different
interaction techniques. By separating the execution, the lan-
guage developers can implement new optimizations without
inhibiting the designer’s process.

However, declarative languages have a trade-off between
flexibility and comprehensibility. Separating specification
from execution obfuscates the underlying program state and
inhibits the developer’s ability to evaluate and debug the out-
put. D3 treads this line by enabling declarative specification
of visualization properties within a development environ-
ment which supports native debugging strategies [BOH11].
D3 leverages existing browser-based developer tools for de-
bugging and uses an immediate evaluation strategy to re-
duce the mismatch between internal control flow and the
developer’s mental model. However, this direct inspection
requires domain expertise and a clear mental model of the
program execution.

Vega is a visualization grammar that builds on D3 with
a higher-level JSON-based specification language [Veg14].
The simplified specification enables iterative exploration of
the design space but limits access to the code execution.
Identifying how changes to the specification impact the visu-
alization, or how user interactions with the visualization and

data are propagated through the execution, is therefore diffi-
cult. Visual representations of program state can provide de-
velopers with the context necessary to better interpret and in-
teract with their code, but standard visualization techniques
often lack scalability or limit the range of questions a devel-
oper could answer [Guo13, LBM14]. This paper presents a
vision of how developers using Vega could visually inspect
the underlying execution process. This inspection can help
alleviate misconceptions about the translation between spec-
ification and visualization, and demonstrate how changes are
realized in the resulting visualization.

2. Visualizing the Vega Data Flow Graph

Vega provides a high-level declarative grammar for produc-
ing common visualizations, and has been extended to sup-
port declarative interaction design [SWH14]. Vega accepts
a JSON specification that is parsed into a data flow graph
representing the execution pipeline. Data tuples are pushed
through this data flow graph to be rendered into the final vi-
sualization. While these internals can be partially inspected
via the JavaScript console, such inspection requires knowl-
edge of the underlying structure of the Vega execution cycle.
For developers without this expertise, the specification and
resulting visualization are the primary resources for debug-
ging, but provide no insight into this structure (Figure 1a, b).
A visualization of the underlying Vega execution model can
bridge this gulf.

Consider a scenario in which a developer wants to imple-
ment a grouped bar chart. Her initial specification produces
a blank chart with axes. Upon inspecting the data flow graph,
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{ "data": [{ "name": "table", "url": "data.json”}, 
  {"name": “groups”, “source”: “table”, 
    "transform": [{"type":"facet", "keys":["category"]}]}],

  "scales": [{ "name": "cat", "type": "ordinal", "range": 
    "width", "domain": {"data": "table", "field": "category"}},
    { "name": "y", …}],
  "axes": […],

  "marks": [{
    "type": "group",
    "from": { "data": “groups”},
    "properties": { "enter": {
      "x": {"scale": "cat", "field": "key"},
      "height": {"scale": "cat", "band": true}}},

    "scales": [{ "name": "pos", "type": "ordinal", 
      "range": "height", "domain": {"field": "x"}}],

    "marks": [{
      "type": "rect",
      "properties": { "enter": {
        "x": {"scale": "pos", "field": "x"},
        "width": {"scale": "pos", "band": true},
        "y": {"scale": "y", "field": "y"},
        "y2": {"scale": "y", "value": 0},
        "fill": {"value": "steelblue"}}}}]
}]}

Figure 1: The components of a Vega workflow with related elements colored; (a) the specification, (b) the output visualization,
and (c) a simplified representation of the underlying data flow graph.

she realizes that the rectangles are being drawn from the root
of a hierarchical data source, not the faceted leaves. To re-
solve the error, she notes that the rectangle marks must in-
herit from a group mark to unpack the hierarchical structure.
This hierarchical structure is clearer in the data flow graph
than the specification alone (Figure 1a, c).

This graph represents the execution structure for render-
ing a Vega specification, but there are a number of questions
as to the best way to use this structure to facilitate the de-
veloper’s workflow. An accurate portrayal of the data flow
graph contains intermediary nodes and edges, such as the
Collector and unlabeled nodes of Figure 1, that are arti-
facts of Vega’s low-level implementation and optimizations.
For example, the Build Group node that constructs the
group mark is not directly connected to the nodes drawing
the rectangle marks, but all nodes are instead routed through
a Collector. This relationship makes it hard to infer how
the rectangle marks are related to the group mark and faceted
data source. As a result, an initial challenge is identifying
and abstracting visualizations of the data flow graph to be
useful to developers.

The current Vega workflow consists of first writing a spec-
ification, and then handing it off to the Vega library to parse
and render the final visualization. This deferred evaluation
creates a lag between authoring a visualization and debug-
ging the resultant output, making it hard to pinpoint the
source of errors. A visualization of the data flow graph can
tighten this feedback loop, enabling a more iterative design
process. Brushing and linking allows developers to jointly
inspect the specification, visualization and data flow graph,
but challenges such as the behavior of interactive visualiza-
tions and hierarchical specifications makes identifying cor-
related elements difficult. Additional techniques, such as

transient overlaid guides [SH14], will be necessary to ac-
count for these complications.

However, visualizing the data flow graph alone does not
provide insight into how data propagates to the resultant vi-
sualization. Such insight would be essential if changes to
the data are not realized in the visualization as expected.
Allowing developers to step through the data propagation
cycle enables rapid identification of how data flows through
and is changed by each operator in the graph. By identify-
ing how data changes at each point, the developer can locate
the node at which her expectations diverge from the actual
behavior. This step-by-step exploration of the data propaga-
tion cycle would also enable the developer to examine how
branches of the data flow graph are dynamically added to
support changes in the data. For example, new nodes would
be added to the data flow graph of Figure 1c to support the
addition of a fourth category in the data source.

3. Conclusion

The proposed techniques can help bridge the gulf of evalu-
ation that is introduced by decoupling specification and ex-
ecution. By presenting and augmenting the data flow graph,
developers can jointly inspect the specification, visualiza-
tion, data flow graph, and streaming data to iteratively de-
velop visualizations. In general, visual representations of
program states can provide developers with the context nec-
essary to better interpret and interact with their code. Surfac-
ing the program state allows developers to adjust their men-
tal model alongside the program execution and can therefore
enable more effective debugging practices by limiting this
separation.
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